Характеристическое уравнение - определение. Что такое Характеристическое уравнение
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Характеристическое уравнение - определение

СТРАНИЦА ЗНАЧЕНИЙ
Характеристическая матрица
Найдено результатов: 252
Характеристическое уравнение      

в математике,

1) Х. у. матрицы - алгебраическое уравнение вида

;

определитель, стоящий в левой части Х. у., получается из определителя матрицы (См. Матрица) А = ||aik||n1 вычитанием величины λ из диагональных элементов. Этот определитель представляет собой многочлен относительно Х - характеристический многочлен. В раскрытом виде Х. у. записывается так:

,

где S1 = a11 + a22 +... ann - т. н. след матрицы, S2 - сумма всех главных миноров 2-го порядка, т. е. миноров вида (i < k) и т.д., а Sn - определитель матрицы А. Корни Х. у. λ1, λ2,..., λn называются собственными значениями матрицы А. У действительной симметричной матрицы, а также у эрмитовой матрицы все λk действительны, у действительной кососимметричной матрицы все λk чисто мнимые числа; в случае действительной ортогональной матрицы, а также унитарной матрицы все |λk| = 1.

Х. у. встречаются в самых разнообразных областях математики, механики, физики, техники. В астрономии при определении вековых возмущений планет также приходят к Х. у.; отсюда и второе название для Х. у. - вековое уравнение.

2) Х. у. линейного дифференциального уравнения с постоянными коэффициентами

a0λy (n) + a1y (n-1) +... + an-1y' + any = 0

- алгебраическое уравнение, которое получается из данного дифференциального уравнения после замены функции у и её производных соответствующими степенями величины λ, т. е. уравнение

a0λn + a1λn-1 +... + an-1 y' + any = 0.

К этому уравнению приходят при отыскании частного решения вида у = сеλх для данного дифференциального уравнения. Для системы линейных дифференциальных уравнений

, ,

Х. у. записывается при помощи определителя

Х. у. матрицы A = , составленной из коэффициентов уравнений данной системы.

ХАРАКТЕРИСТИЧЕСКОЕ УРАВНЕНИЕ      
алгебраическое уравнение видаОпределитель в этой формуле получается из определителя матрицы вычитанием величины x из диагональных элементов; он представляет собой многочлен относительно x и называется характеристическим многочленом.
ХАРАКТЕРИСТИЧЕСКИЙ МНОГОЧЛЕН         
многочлен, стоящий в левой части характеристического уравнения.
Характеристический многочлен         

многочлен, стоящий в левой части характеристического уравнения (См. Характеристическое уравнение).

Уравнение непрерывности         
  • Фрагмент мемуара Д’Аламбера [http://gidropraktikum.narod.ru/equations-of-hydrodynamics.htm#continuity-equation «Essai d’une nouvelle théorie de la résistance des fluides»] (1752, относится к 1749), содержащий уравнение неразрывности для стационарного осесимметрического течения сжимаемой жидкости (<math>\delta</math> — плотность, <math>p</math>, <math>q</math> — компоненты скорости в цилиндрической системе координат)
ЛОКАЛЬНАЯ ФОРМА ЗАКОНОВ СОХРАНЕНИЯ
Уравнение неразрывности; Неразрывности уравнение; Уравнение несжимаемости; Уравнение неразрывности течения
Уравне́ния непреры́вности — (сильная) локальная форма законов сохранения. Ниже приведены примеры уравнений непрерывности, которые выражают одинаковую идею непрерывного изменения некоторой величины.
Неразрывности уравнение         
  • Фрагмент мемуара Д’Аламбера [http://gidropraktikum.narod.ru/equations-of-hydrodynamics.htm#continuity-equation «Essai d’une nouvelle théorie de la résistance des fluides»] (1752, относится к 1749), содержащий уравнение неразрывности для стационарного осесимметрического течения сжимаемой жидкости (<math>\delta</math> — плотность, <math>p</math>, <math>q</math> — компоненты скорости в цилиндрической системе координат)
ЛОКАЛЬНАЯ ФОРМА ЗАКОНОВ СОХРАНЕНИЯ
Уравнение неразрывности; Неразрывности уравнение; Уравнение несжимаемости; Уравнение неразрывности течения

в гидродинамике, одно из уравнений гидродинамики, выражающее закон сохранения массы для любого объёма движущейся жидкости (газа). В переменных Эйлера (см. Эйлера уравнения гидромеханики) Н. у. имеет вид:

где ρ - плотность жидкости, v - её скорость в данной точке, a vx, vy, vz - проекции скорости на координатные оси. Если жидкость несжимаема (ρ = const), Н. у. принимает вид:

Для установившегося одномерного течения в трубе, канале и т.п. с площадью поперечного сечения S Н. у. даёт закон постоянства расхода ρSv = const.

С. М. Тарг.

Уравнение Шрёдингера         
  • Альпбахе]]
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ИЗ КВАНТОВОЙ МЕХАНИКИ В ЧАСТНЫХ ПРОИЗВОДНЫХ
Шредингера уравнение; Шрёдингера уравнение; Уравнение Шредингера; Осцилляционная теорема
Уравне́ние Шрёдингера — линейное дифференциальное уравнение в частных производных, описывающее изменение в пространстве (в общем случае, в конфигурационном пространстве) и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах.
Кинетическое уравнение Больцмана         
Уравнение Больцмана; Больцмана уравнение; Больцмана кинетическое уравнение

уравнение для функции распределения f (ν, r, t) молекул газа по скоростям ν и координатам r (в зависимости от времени t), описывающее неравновесные процессы в газах малой плотности. Функция f определяет среднее число частиц со скоростями в малом интервале от ν до νν и координатами в малом интервале от r до r + Δr (см. Кинетическая теория газов). Если функция распределения зависит только от координаты х и составляющей скорости νx, К. у. Б. имеет

.

(m - масса частицы). Скорость изменения функции распределения со временем характеризуется частной производной , второй член в уравнений, пропорциональный частной производной функции распределения по координате, учитывает изменение f в результате перемещения частиц в пространстве; третий член определяет изменение функции распределения, обусловленное действием внешних сил F. Стоящий в правой части уравнения член, характеризующий скорость изменения функции распределения за счёт столкновений частиц, зависит от f и характера сил взаимодействия между частицами и равен

Здесь f, f1 и f', f'1 - функции распределения молекул до столкновения и после столкновения соответственно, ν, ν1 - скорости молекул до столкновения, dσ=σdΩ - дифференциальное эффективное сечение рассеяния в телесный угол (в лабораторной системе координат), зависящее от закона взаимодействия молекул; для модели молекул в виде жёстких упругих сфер (радиуса R) σ =4R2cosϑ, где ϑ - угол между относительной скоростью - ν 1 сталкивающихся молекул и линией, соединяющей их центры. К. у. Б. было выведено Л. Больцманом в 1872.

Различные обобщения К. у. Б. описывают поведение электронного газа в металлах, Фононов в кристаллической решётке и т.д. (однако чаще эти уравнения называют просто кинетическими уравнениями, или уравнениями переноса). См. Кинетика физическая.

Г. Я. Мякишев

ШРЕДИНГЕРА УРАВНЕНИЕ         
  • Альпбахе]]
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ИЗ КВАНТОВОЙ МЕХАНИКИ В ЧАСТНЫХ ПРОИЗВОДНЫХ
Шредингера уравнение; Шрёдингера уравнение; Уравнение Шредингера; Осцилляционная теорема
основное уравнение нерелятивистской квантовой механики; позволяет определить возможные состояния системы, а также изменение состояния во времени. Сформулировано Э. Шредингером в 1926.
Шрёдингера уравнение         
  • Альпбахе]]
ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ ИЗ КВАНТОВОЙ МЕХАНИКИ В ЧАСТНЫХ ПРОИЗВОДНЫХ
Шредингера уравнение; Шрёдингера уравнение; Уравнение Шредингера; Осцилляционная теорема

основное динамическое уравнение нерелятивистской квантовой механики (См. Квантовая механика); названо в честь австрийского физика Э. Шрёдингера, который предложил его в 1926. В квантовой механике Ш. у. играет такую же фундаментальную роль, как уравнение движения Ньютона в классической механике и Максвелла уравнения в классической теории электромагнетизма. Ш. у. описывает измерение во времени состояния квантовых объектов, характеризуемого волновой функцией (См. Волновая функция). Если известна волновая функция ψ в начальный момент времени, то, решая Ш. у., можно найти ψ в любой последующий момент времени t.

Для частицы массы т, движущейся под действием силы, порождаемой потенциалом V (х, у, z, t), Ш. у. имеет вид:

, (1)

где i = , ħ = 1,05.10―27 эрг. сек - Планка постоянная, - Лапласа оператор (х, у, z - координаты). Это уравнение называется временны́м Ш. у.

Если потенциал V не зависит от времени, то решения Ш. у. можно представить в виде:

ψ(х, у, z, t) = ψ (х, у, z), (2)

где Е - полная энергия квантовой системы, а ψ (x, у, z) удовлетворяет стационарному Ш. у.:

(3)

Для квантовых систем, движение которых происходит в ограниченной области пространства, решения Ш. у. существуют только для некоторых дискретных значений энергии: E1, E2,..., En,...; члены этого ряда (в общем случае бесконечного) нумеруются набором целых квантовых чисел n. Каждому значению Еп соответствует волновая функция ψn (x, у, z), и знание полного набора этих функций позволяет вычислить все измеримые характеристики квантовой системы.

В важном частном случае кулоновского потенциала

(где е - элементарный электрический заряд) Ш. у. описывает атом водорода, и En представляют собой энергии стационарных состояний атома.

Ш. у. является математическим выражением фундаментального свойства микрочастиц - корпускулярно-волнового дуализма (См. Корпускулярно-волновой дуализм), согласно которому все существующие в природе частицы материи наделены также волновыми свойствами (эта гипотеза впервые была высказана Л. де Бройлем (См. Бройль) в 1924). Ш. у. удовлетворяет Соответствия принципу и в предельном случае, когда длины волн де Бройля (См. Волны де Бройля) значительно меньше размеров, характерных для рассматриваемого движения, содержит описание движения частиц по законам классической механики. Переход от Ш. у. к классическим траекториям подобен переходу от волновой оптики к геометрической. Аналогия между классической механикой и геометрической оптикой, которая является предельным случаем волновой, сыграла важную роль в установлении Ш. у.

С математической точки зрения Ш. у. есть волновое уравнение и по своей структуре подобно уравнению, описывающему колебания нагруженной струны. Однако, в отличие от решений уравнения колебаний струны, которые дают геометрическую форму струны в данный момент времени, решения ψ(х, у, z, t) Ш. у. прямого физического смысла не имеют. Смысл имеет квадрат волновой функции, а именно величина ρn (x, у, z, t) = n (x, у, z, t)|2, равная вероятности нахождения частицы (системы) в момент t в квантовом состоянии n в точке пространства с координатами х, у, z. Эта вероятностная интерпретация волновой функции - один из основных постулатов квантовой механики.

Математическая формулировка постулатов квантовой механики, основанная на Ш. у., носит название волновой механики. Она полностью эквивалентна т. н. матричной механике В. Гейзенберга, которая была сформулирована им в 1925.

Ш. у. позволяет объяснить и предсказать большое число явлений атомной физики, а также вычислить основные характеристики атомных систем, наблюдаемые на опыте, например уровни энергии атомов, изменение спектров атомов под влиянием электрического и магнитного полей и т.д. С помощью Ш. у. удалось также понять и количественно описать широкий круг явлений ядерной физики, например закономерности α-распада, γ-излучение ядер, рассеяние нейтронов на ядрах и др.

Лит.: Шрёдингер Э., Новые пути в физике. Статьи и речи, М., 1971. См. также лит. к ст. Квантовая механика.

Л. И. Пономарёв.

Википедия

Характеристический многочлен

В математике характеристический многочлен может означать:

  • характеристический многочлен матрицы
  • характеристический многочлен линейной рекуррентной последовательности
  • характеристический многочлен обыкновенного дифференциального уравнения. Получается после замены y = e λ x {\displaystyle y=e^{\lambda x}} .