Химические энциклопедии - определение. Что такое Химические энциклопедии
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Химические энциклопедии - определение

Химические уравнения; Уравнения химические
  • 265x265px
  • Титульный лист Tyrocinium Chymicum
Найдено результатов: 117
Химические энциклопедии      

и словари, научные справочные издания, содержащие расположенные в алфавитном (реже в систематическом) порядке основные сведения по химии и химической технологии. Х. э. подразделяются на общие (охватывающие все области химии) и специальные (посвященные конкретной области химии). Во многих современных Х. э. и словарях наряду со статьями об основных химических понятиях, свойствах веществ и химических реакциях содержатся сведения о химическом лабораторном оборудовании, номенклатуре химических соединений, о т. н. "именных" реакциях, а также по отдельным вопросам смежных с химией наук (биологии, физики, медицины и др.). Крупные статьи обычно сопровождаются ссылками на важнейшие литературные источники; многотомные издания, как правило, снабжены алфавитными предметными указателями; в некоторых Х. э. и словарях помещены краткие биографии учёных-химиков.

Предшественниками Х. э. были некоторые рукописи 1-4 вв., например Плиния (См. Плиний) Старшего, Волоса из Мендеса, Зосимы (См. Зосима) из Панополиса. Изложению химико-металлургических знаний посвящены последние главы "Книги семидесяти", приписываемой арабскому алхимику Джабиру ибн Хайяну (См. Джабир ибн Хайян). Из др. сочинений алхимиков заслуживают внимания "Книга тайн" и "Книга тайны тайн" Рази, который первым попытался классифицировать все известные к тому времени вещества, "Книга об алхимии" Альберта Великого (См. Альберт Великий) и "Великий труд" Р. Бэкона. Большое значение для формирования Х. э. имели труды В. Бирингуччо "О пиротехнике" (1540) и Г. Агриколы (См. Агрикола) "О горном деле и металлургии" (1556).

Первые Х. э. появились в 17-18 вв.; они представляли собой 1-2-томные издания, в которых материал располагался по алфавиту, например словари М. Руланда (Ruland М., "Lexicon Alchemiae", Francofurti, 1612), У. Джонсона (Johnson W., "Lexicon chymicum", v. 1-2, L., 1652-53), П. Ж. Макера (Macquer P. J., "Dictionnaire de chymie...", t. 1-2, P., 1766). Словарь Макера неоднократно переиздавался и переводился на др. языки, русские переводы многих статей с некоторыми изменениями опубликованы в 1788-90 в журнале Н. И. Новикова "Магазин натуральной истории, физики и химии...", ч. 1-10. В начале 19 в. В. М. Севергин издал сочинения Ш. Л. Каде (Ch. L. Cadet) "Словарь химический, содержащий в себе теорию и практику химии с приложением ее к естественной истории и искусствам, обработанный на российском языке трудами Василия Севергина" (ч. 1-4, СПБ, 1810-13). Во 2-й половине 19 - начале 20 вв. появились фундаментальные многотомные Х. э., например Liebig J., Poggendorff J., Wohler Fr., Handwörterbuch der reinen und angewandten. Chemie, Bd 1-9, Braunschweig, 1837-1864; Wurtz Ch. A., Dictionnaire de chimie pure et appliquée, t. 1-3 (avec 2 suppléments), P., 1868-1908; Ladenburg A., Handwörterbuch der Chemie, Bd 1-13, Breslau, 1882-95; Frémy E., Encyclopédie chimique, v. 1-94, P., 1882-99; Muspratt J. S., Theoretische, praktische una analytische Chemie in Anwendung auf Künste und Gewerbe, 4 AufL, Bd 1-12, Braunschweig, 1888-1922.

Среди современных Х. э. наиболее известны: "Ullmanns Eneykiopädie der technischen Chemie", 3 Aufl., Bd 1-19, Münch. - В., 1951-69, 4 Aufl., Bd 1-8, Münch. - В. - W., 1972-74; Thorpe J. F., Dictionary of applied chemistry, 4 ed., v. 1-12, L. - N. Y., 1937-56; Kirk R., Othmer D. (ed.), Encyclopedia of chemical technology, 2 ed., v. 1-22, L. - N. Y., 1963-70: "Краткая химическая энциклопедия". гл. ред. И. Л. Кнунянц, т. 1-5, М., 1961-67: "Encyclopedia of polymer science and technology. Plastics, resins, rubbers, fibers", ed. Н. F. Mark, N. G. Gaylord, N. М. Bikales, 1-16, N. Y., 1964-72; "The International encyclopedia of physical chemistry and chemical physics", topics 1-21, ed. E. A. Guggenheim, Oxf. - [a. o.], 1963-75 (в этой энциклопедии каждой теме посвящены несколько томов, написанных видными специалистами); Römpp Н., Chemie Lexicon, 7 AufL, Bd 1-5, Stuttg.,1973-75.

Среди современных кратких Х. э. и словарей представляют интерес следующие издания: по общей и неорганической химии - Albu С. D., Brezeanu М., Mică enciclopedie de chimie, Buc., 1974; "Brockhaus ABC Chemie", Bd 1-2, Lpz., 1971; Carraro F., Dicionário de quimica, Porto Alegre, 1970; "The condensed chemical dictionary", ed. A. Rose, E. Rose, 7 ed., N. Y., 1966; "New dictionary of chemistry", ed. L. Miall, 3 ed., L., 1961; DuvaI C., DuvaI R., Dolique R., Dictionnaire de la chimie et de ses applications, 2 ed., P., 1959; "The encyclopedia of chemistry", ed. C. A. Hampel, G. G. Hawley, 3 ed., N. Y., 1973; Giua М., Giua-Lollini C., Dizionario de chimica. Generale e industriale, 2 ed., v. 1-3, Torino, 1948-50; Kingzett's chemical encyclopaedia. A digest of chemistry and its industrial applications, ed. D. Hey, 9 ed., L., 1966; "Кратка химическа энциклопедия", редактор С. Гуцов и др., т. 1-2, София, 1971-72; "The Merck Index. An encyclopedia of chemicals and drugs", ed. P. Stecher, 8 ed., Rahway - N. Y., 1968; Sittig M., Inorganic chemical and metallurgical process encyclopedia, L., 1968; Van Nostrand's International encyclopedia of chemical science, N. Y. - [а. о.], 1964; "Неорганическая химия. Энциклопедия школьника", гл. ред. И. П. Алимарин, М., 1975; по фической химии - "The encyclopedia of electrochemistry", ed. C. Hampel, N. Y. - L., 1964; Clark G. L., The encyclopedia of x-rays and gamma-rays, N. Y., 1963; по химии полимеров - "Энциклопедия полимеров", гл. ред. В. А. Кабанов, t. 1-3, М., 1972-1977; "Characterization of polymers. Encyclopedia reprints", ed. N. Bikales, N. Y. - L., 1971; по аналитической химии и лабораторной технике - "Encyclopedia of industrial chemical analysis", ed. F. D. Snell, C. L. Hilton, Z. S. Ettre, v. 1-20, N. Y., 1966-74; "The encyclopedia of microscopy", ed. G. Clark, N. Y. - L., 1961; "Encyclopedia of microscopy and microtechnique", ed. P. Gray, N. Y., 1973; Parr N. L., Laboratory Handbook, L., 1963; по прикладной химии и химической технологи и - "Dictionary of chemistry and chemical technology". In six languages, ed. Z. Sobecka, Oxf. - Warsz., 1965; Stewart J., An encyclopedia of the chemical process industries, N. Y., 1956; "The encyclopedia of chemical process equipment", ed. W. J. Mead, N. Y., 1974.

Сведения по химии и химической технологии включаются также в универсальные энциклопедии и Технические энциклопедии и словари, например в Большой советской энциклопедии (См. Большая советская энциклопедия) (3 изд.) более 4000 статей, посвященных основным вопросам теоретической и прикладной химии.

Лит.: Терентьев А. П., Яновская Л. А., Химическая литература и пользование ею, 2 изд., М., 1967; Фигуровский Н. А., Очерк общей истории химии. От древнейших времён до начала XIX в., М., 1969; Джуа М., История химии, пер. с итал., 2 изд., М., 1975; Mellon M. G., Chemical publications, their nature and use, 4 ed., N. Y., 1965.

А. М. Дубинская, Э. Л. Призмент.

Химические уравнения         
Уравнения химические         

изображения реакций химических (См. Реакции химические) посредством знаков химических (См. Знаки химические), формул химических (См. Формулы химические), чисел и математических знаков. На возможность такого описания химических реакций указал в 1789 А. Лавуазье, основываясь на сохранения массы законе (См. Массы сохранения закон); однако всеобщее применение У. х. получили только в 1-й половине 19 в. Каждое У. х. состоит из двух частей - левой и правой, соединённых знаком равенства (иногда для обозначения направления реакции - простой стрелкой →, а реакции обратимой - двойной .). В левой части пишут формулы исходных веществ, в правой - формулы полученных веществ; между формулами ставят знак +. При составлении У. х. принимают, что масса полученных веществ равна массе исходных и что число атомов одних и тех же элементов должно быть в обеих частях У. х. одинаковым. Перед формулами исходных и полученных веществ ставят коэффициенты, которые должны быть целыми числами. Например, зная, что при горении метана в кислороде образуются вода и двуокись углерода, можно сразу написать У. х. этой реакции:

CH4 + 2O2 = 2H2O + CO2. (1)

В более сложных случаях применяют приёмы, описанные в ст. Окисление-восстановление, а также способ, основанный на решении систем неопределённых уравнений. Например, требуется подобрать коэффициент У. х. обжига пирита FeS2 в кислороде:

xFeS2 + yO2 = 2Fe2O3 + tSO2. (2)

Очевидно, что х = 2z, t = 2x, 1y = 3z + 2t. Положив z = 1, имеем: х = 2, t = 4, у = 5,5. Умножив эти числа на 2, получаем: 4FeS2 + 11O2 = 2Fe2O3 + 8SO2.

На основании У. х. делаются расчёты, необходимые в лабораторной и заводской практике.

Лит.: Некрасов Б. В., Основы общей химии, 3 изд., т. 1, М., 1973.

С. А. Погодин.

ХИМИЧЕСКИЕ УРАВНЕНИЯ         
см. Уравнения химические.
ХИМИЧЕСКОЕ УРАВНЕНИЕ         
краткий способ описания химической реакции. Символы, обозначающие вступающие в реакцию вещества, находятся в левой части уравнения, а обозначения продуктов реакции - в правой:
где в скобках указано агрегатное состояние, Q - тепловой эффект реакции. Это уравнение описывает химическую реакцию между натрием и хлором с образованием хлорида натрия (поваренная соль). Натрий - металл, бурно реагирующий с водой, хлор - ядовитый газ, но, соединяясь друг с другом, эти элементы образуют вполне безвредное вещество, необходимое для жизни. Это пример реакций присоединения. Известны также химические реакции замещения, обмена, разложения и пр.; реакции могут быть обратимые, ионные, окислительно-восстановительные, ядерные и др. в зависимости от принципа классификации реакций: по формальному признаку, по механизму реакций, по термодинамическим или кинетическим параметрам и т.д. См. также ПРЕВРАЩЕНИЯ ВЕЩЕСТВ
.
Реакции присоединения X + Y . XY
Примеры:
Число атомов данного элемента в левой части уравнения равно числу этих атомов в правой части, другими словами, вещество в ходе химической реакции не возникает из ничего и не уничтожается. Химическая реакция, в которой выделяется тепло, например реакция (1), называется экзотермической, а реакция, которая протекает только при подводе тепла извне, например реакция (2), - эндотермической. Почти все химические реакции сопровождаются выделением или поглощением тепла, но в уравнениях это часто не указывают, если только не рассматриваются термодинамические аспекты процесса.
Реакции замещения
или
Примеры:
В реакции (4) металлический цинк замещает водород в соляной кислоте. В реакции (5) медь замещает серебро в нитрате серебра. В реакции (6) хлор замещает бром в бромиде кальция.
Реакции обмена (двойного замещения) XY + UV . XV + UY
Примеры:
Реакция (7) - типичный пример кислотно-основной реакции (реакции нейтрализации), продуктами которой являются соль и вода. В реакции (8) в результате взаимодействия иона бария Ba2+, принадлежащего нитрату бария Ba(NO3)2, c сульфат-ионом серной кислоты образуется осадок сульфата бария BaSO4. В реакциях (7) и (8) реагирующие вещества обмениваются катионами.
Реакции разложения (расщепления)
Примеры
В реакции (9) синие кристаллы гидратированного сульфата меди разлагаются при нагревании, при этом гидратная вода превращается в пар. Реакция (10) протекает при относительно невысокой температуре в присутствии катализатора - диоксида марганца. Катализатор ускоряет химическую реакцию, оставаясь при этом неизменным (см. также КАТАЛИЗ). Реакция (11) применяется в промышленности: известняк (карбонат кальция CaCO3) при интенсивном нагревании разлагается, образуя негашеную известь (оксид кальция CaO) - важную составную часть цемента.
Обратимые реакции или
Стрелки в прямом и обратном направлениях указывают, что продукты реакции взаимодействуют с образованием исходных реагентов, другими словами, реакция идет в обоих направлениях. Систему, в которой протекает обратимая реакция, можно уподобить двум водоемам, соединенным узкой протокой, в которых обитают два или несколько видов рыб. Рыбы беспрепятственно переплывают из одного водоема в другой, так что в конце концов каждый водоем оказывается заселенным смешанной популяцией постоянного состава. Это и есть состояние равновесия.
Примеры:
Количества исходных веществ и продуктов реакции сильно зависят от давления, температуры и концентрации реагирующих веществ.
Ионные реакции. Химические уравнения можно записывать с указанием заряда исходных веществ и продуктов реакции (+, -, 0 означают положительный, отрицательный и нулевой электрические заряды соответственно; их помещают вверху справа от символа химического элемента). Члены уравнения в правой и левой его частях, отвечающие группам атомов одинакового состава, несущих одинаковый заряд, можно сокращать, как это принято в алгебраических уравнениях:
Ион серебра Ag+ несет один положительный заряд; следовательно, на каждый атом меди, образующий двухзарядный положительный ион, должно приходиться два иона серебра, поскольку суммы зарядов в левой и правой частях уравнений должны быть одинаковы. После сокращения одинаковых членов в обеих частях уравнения получаем уравнение (16), которое выражает химические превращения, произошедшие в реакции. Приведенные выше уравнения - это три разных способа представления одной и той же химической реакции: ее молекулярная форма, полная и сокращенная ионные формы.
Ядерные реакции. Ядерные реакции можно отнести к химическим лишь весьма условно, поскольку в них элемент превращается в изотоп того же элемента или другой элемент. Иногда какая-то часть вещества в ядерной реакции исчезает, и этот процесс сопровождается высвобождением огромного количества энергии; такие процессы происходят при взрыве атомной бомбы или в ядерном реакторе. Обычно в уравнениях ядерных реакций фигурируют нейтроны (), протоны (), электроны (), ?-частицы (), ?-лучи () и позитроны (). Верхний левый индекс обозначает массу частицы, а нижний левый - ее заряд. Приведем уравнения типичных ядерных реакций:
Суммы верхних индексов в левой и правой частях уравнения должны быть одинаковыми; то же самое относится к нижним индексам. Может показаться, что масса вещества в ходе ядерных реакций (17)-(19) не изменяется. В действительности же вследствие взаимодействия элементарных частиц в ядре и изменения их массы покоя у продуктов масса может оказаться чуть меньше, чем у исходных веществ. Именно с исчезновением этого незначительного количества вещества, которое превращается в энергию согласно уравнению Эйнштейна Е = mc2, и связана разрушительная сила ядерного взрыва. Протекающая при этом реакция описывается уравнением (19). В уравнении (17) ((криптон ) испускает нейтрон с образованием изотопа с тем же атомным номером (36), но массой, меньшей на единицу.
Окислительно-восстановительные реакции. В ходе окислительно-восстановительной реакции меняется заряд элементов (их степень окисления), что и учитывается при написании уравнения. Потеря электрона называется окислением, а приобретение - восстановлением. Число отданных и приобретенных в ходе реакции электронов должно быть одинаковым, и исходя из этого устанавливаются соотношения между всеми участниками реакции. Рассмотрим реакцию
Приведем более сложный пример - окислительно-восстановительную реакцию между медью и концентрированной азотной кислотой:
В ходе этой реакции Сu0 теряет 2 электрона, превращаясь в ион Сu2+, а N5+ принимает 1 электрон, превращаясь в N4+. Чтобы уравнять число отданных электронов с числом приобретенных, вводим коэффициент 2 перед NO2 в правой части, а чтобы число атомов азота при этом осталось прежним, умножаем HNO3 в левой части на 2. Cu(NO3)2 в правой части содержит два иона степень окисления N в которых равна +5. Чтобы сохранить число ионов в левой части с той же степенью окисления, добавляем в левой части 2 молекулы HNO3. Далее, чтобы уравнять 4H+, содержащихся в молекулах HNO3, записываем в правой части 2H2O. В левой части имеем 3?4 = 12 ионов кислорода, содержащихся в кислоте. Эти 12 ионов кислорода присутствуют и в правой части: 2 в воде, 4 в NO2 и 6 в нитрате меди Cu(NO3)2. Аналогичным образом можно записывать любые, более сложные уравнения.
Применение. Химические уравнения используются химиками-технологами при расчете характеристик производственных процессов. Так, с их помощью определяется количество реагентов (сырья), необходимое для получения данного количества продукта. См. также ХИМИЯ.
УРАВНЕНИЯ ХИМИЧЕСКИЕ         
запись химической реакций при помощи химических формул и численных коэффициентов. В левой части уравнений химических записываются формулы исходных веществ, в правой - продуктов реакции. Коэффициенты перед формулами (т. н. стехиометрические) подбираются так, чтобы сумма атомов одних и тех же элементов была одинаковой в левой и правой частях уравнения.
Химическое уравнение         
Химическим уравнением (уравнением химической реакции) называют условную запись химической реакции с помощью химических формул, числовых коэффициентов и математических символов.
Химические формулы         
  • 130px
  • 110px
ОБОЗНАЧЕНИЕ СОСТАВА ВЕЩЕСТВА
Химический состав; Химические формулы; Формулы химические; Формула химическая; Истинная формула
Формулы химические         
  • 130px
  • 110px
ОБОЗНАЧЕНИЕ СОСТАВА ВЕЩЕСТВА
Химический состав; Химические формулы; Формулы химические; Формула химическая; Истинная формула

изображения состава химически индивидуальных веществ посредством знаков химических (См. Знаки химические) и чисел. В общем случае Ф. х. имеет вид AmBnCp..., где А, В, С... - символы атомов химических элементов, из которых состоит данное вещество; m, n, р - числа, как правило, целые, показывающие, сколько атомов каждого из элементов входит в состав данного вещества (в Ф. х. нестехиометрических соединений (См. Нестехиометрические соединения) они могут быть дробными).

Для установления Ф. х. вещества необходимо: найти его количественный состав в \% по массе; заменить процентное содержание по массе отношениями между числами атомов; представить эти отношения целыми числами. Пример: При анализе медного колчедана найдено (в \% по массе): 34,64 Cu; 30,42 Fe; 34,94 S. Разделив эти числа на атомные массы Cu (63,55), Fe (55,85), S (32,06), получим частные: 0,545; 0,545; 1,090. Эти числа относятся как 1: 1: 2, откуда искомая Ф. х. - CuFeS2.

Ф. х., полученные непосредственно из результатов количественного анализа, называются простейшими. Чтобы установить истинную Ф. х. вещества, необходимо определить его молекулярную массу (См. Молекулярная масса). Если это невозможно, приходится пользоваться только простейшей Ф. х. Простейшие Ф. х. содержат только сведения о количественном составе вещества. Истинные Ф. х. включают дополнительную информацию о действительном числе атомов каждого элемента в 1 моле вещества, а если оно может быть превращено в газ, то и о массе 1 л этого газа (см. Авогадро закон).

Взаимную связь атомов в молекулах отражают структурные Ф. х. (см. также Химического строения теория, Комплексные соединения).

Лит.: Некрасов Б. В., Основы общей химии, т. 1, 3 изд., М., 1973.

С. А. Погодин.

Химическая формула         
  • 130px
  • 110px
ОБОЗНАЧЕНИЕ СОСТАВА ВЕЩЕСТВА
Химический состав; Химические формулы; Формулы химические; Формула химическая; Истинная формула
Хими́ческая фо́рмула — условное обозначение химического состава и структуры соединений с помощью символов химических элементов, числовых и вспомогательных знаков (скобок, тире и т. п.). Химические формулы являются составной частью языка химии, на их основе составляются схемы и уравнения химических реакций, а также химическая классификация и номенклатура веществ. Одним из первых начал использовать их русский химик .

Википедия

Химическое уравнение

Химическим уравнением (уравнением химической реакции) называют условную запись химической реакции с помощью химических формул, числовых коэффициентов и математических символов.

Уравнение химической реакции даёт качественную и количественную информацию о химической реакции, реагентах и продуктах реакции; его составление основывается на законах стехиометрии, в первую очередь, законе сохранения массы веществ в химических реакциях. Кроме уравнений используются полные и краткие схемы химических реакций — условные записи, дающие представление о природе реагентов и продуктов, то есть качественную информацию о химической реакции.

Что такое Хим<font color="red">и</font>ческие энциклоп<font color="red">е</font>дии - определение