Целая функция - определение. Что такое Целая функция
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Целая функция - определение

Порядок целой функции
Найдено результатов: 461
Целая функция         

функция, аналитическая во всей плоскости комплексного переменного (см. Аналитические функции). Примерами Ц. ф. могут служить алгебраический многочлен a0 + a1z +... + anzn, функции sinz, cosz, ez. Бесконечно удалённая точка является, вообще говоря, изолированной особой точкой (См. Особая точка) Ц. ф. Для того чтобы бесконечно удалённая точка была устранимой особой точкой (соответственно полюсом), для Ц. ф. f (z) необходимо и достаточно, чтобы f (z) была постоянна (соответственно была алгебраическим многочленом). Если точка z = ∞ является существенно особой точкой для Ц. ф. f (z), то f (z) называют трансцендентной Ц. ф. Таковы, например, функции sinz, cosz, ez.

Для того чтобы f (z) была Ц. ф., необходимо и достаточно, чтобы по крайней мере для одной точки z0 имело место соотношение

В этом случае разложение f (z) в ряд Тейлора

будет сходиться по всей плоскости комплексного переменного.

Основой для классификации трансцендентных Ц. ф. служит скорость роста М (r) функции, определяемой равенством

Величину

называют порядком Ц. ф. f (z). В трудах А. Пуанкаре, Ж. Адамара (См. Коши - Адамара теорема) и Э. Бореля (См. Борель) была установлена связь между порядком Ц. ф. и распределением её нулей.

Лит.: Маркушевич А. И., Целые функции, М., 1965.

ЦЕЛАЯ ФУНКЦИЯ         
функция, аналитическая во всей плоскости комплексного переменного. Примерами целой функции служат многочлен a0 + a1z - ... anzn, функции sin z, cos z.
Целая функция         
Целая функцияфункция, регулярная во всей комплексной плоскости. Типичным примером целой функции может служить многочлен или экспонента, а также суммы, произведения и суперпозиции этих функций. Ряд Тейлора целой функции сходится во всей плоскости комплексного переменного. Логарифм, квадратный корень не являются целыми функциями.
Односторонняя функция         
Односторонняя функция — математическая функция, которая легко вычисляется для любого входного значения, но трудно найти аргумент по заданному значению функции. Здесь «легко» и «трудно» должны пониматься с точки зрения теории сложности вычислений.
Функция (программирование)         
ПОДПРОГРАММА, КОТОРУЮ МОЖНО ИСПОЛЬЗОВАТЬ В ВЫРАЖЕНИИ
Функция (информатика)
Фу́нкция в программировании, или подпрограмма — фрагмент программного кода, к которому можно обратиться из другого места программы. В большинстве случаев с функцией , но многие языки допускают и безымянные функции. С именем функции неразрывно связан адрес первой инструкции (оператора), входящей в функцию, которой передаётся управление при обращении к функции. После выполнения функции управление возвращается обратно в адрес возврата — точку программы, где данная функция была вызвана.
Кососимметрическая функция         
Кососимметрическая (или знакопеременная) функция — функция от нескольких переменных, не меняющаяся при чётных перестановках аргументов и меняющая знак при нечётных перестановках.
ДЕЛЬТА-ФУНКЦИЯ         
  • 200px
  • Функция Хевисайда.
  • 200px
  • График функции <math>\frac{\sin x}{x}.</math>
?-функция Дирака, символ, применяемый в математической физике при решении задач, в которые входят сосредоточенные величины (нагрузка, заряд и т. п.). Дельта-функция - простейшая обобщенная функция; она характеризует, напр., плотность распределения масс, при котором в одной точке сосредоточена единичная масса, а любой интервал, не содержащий этой точки, свободен от масс.
Дельта-функция         
  • 200px
  • Функция Хевисайда.
  • 200px
  • График функции <math>\frac{\sin x}{x}.</math>

δ-функция, δ-функция Дирака, δ(x), символ, применяемый в математической физике при решении задач, в которые входят сосредоточенные величины (сосредоточенная нагрузка, сосредоточенный заряд и т.д.). Д.-ф. может быть определена как плотность распределения масс, при которой в точке x = 0 сосредоточена единичная масса, а масса во всех остальных точках равна нулю. Поэтому полагают δ(x) = 0 при x ≠ 0 и δ(0) = ∞, причём

("бесконечный всплеск" "единичной интенсивности"). Более точно, Д.-ф. называется обобщённая функция (См. Обобщённые функции), определяемая равенством

имеющим место для всех непрерывных функций φ(x).

В теории обобщённых функций Д.-ф. называют сам функционал, определяемый этим равенством.

Дельта-функция         
  • 200px
  • Функция Хевисайда.
  • 200px
  • График функции <math>\frac{\sin x}{x}.</math>
Де́льта-фу́нкция (или дельта-мера, -функция, -функция Дирака, дираковская дельта, единичная импульсная функция) — обобщённая функция, которая позволяет записать точечное воздействие, а также пространственную плотность физических величин (масса, заряд, интенсивность источника тепла, сила ), сосредоточенных или приложенных в одной точке.
МОНОТОННАЯ ФУНКЦИЯ         
  • Рисунок 1. Монотонно возрастающая функция. Она строго возрастает слева и справа, а в центре не убывает.
  • Рисунок 2. Монотонно убывающая функция.
  • Рисунок 3. Функция, не являющаяся монотонной.
МАТЕМАТИЧЕСКАЯ ФУНКЦИЯ
Возрастающая функция; Убывающая функция; Строго возрастающая функция; Строго убывающая функция; Невозрастающая функция; Неубывающая функция; Монотонность функции
функция, которая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает).

Википедия

Целая функция

Целая функция — функция, регулярная во всей комплексной плоскости. Типичным примером целой функции может служить многочлен или экспонента, а также суммы, произведения и композиции этих функций. Ряд Тейлора целой функции сходится во всей плоскости комплексного переменного. Логарифм, квадратный корень не являются целыми функциями.

Отметим, что целая функция может иметь особенность (в т.ч. даже существенную особенность) в бесконечности. Как следует из теоремы Лиувилля, функция, которая не имеет особых точек на всей расширенной комплексной плоскости, должна быть постоянной (это свойство может быть использовано для элегантного доказательства основной теоремы алгебры).

Целая функция, имеющая на бесконечности полюс, должна быть многочленом. Таким образом, все целые функции, не являющиеся многочленами (в частности, тождественно постоянными) имеют на бесконечности существенно особую точку. Такие функции называются трансцендентными целыми функциями.

Малая теорема Пикара значительно усиливает теорему Лиувилля: не равная тождественно постоянной целая функция принимает все комплексные значения, кроме, возможно, одного. Примером является экспоненциальная функция, принимающая в качестве значений все комплексные числа, кроме нуля.

Дж. Литлвуд в одной из своих книг указывает сигма-функцию Вейерштрасса в качестве «типичного» примера целой функции.