число а, удовлетворяющее алгебраическому уравнению a1αn+ ... + акα +an+1 = 0, где n ≥ 1, a1, ..., an, an+1 - целые (рациональные) числа. Число α называется целым А. ч., если a1 = 1. Если многочлен f(x) = a1xn + ... + anx + an+1 не является произведением двух др. многочленов положительной степени с рациональными коэффициентом, то число n называется степенью А. ч. α. Простейшие А.ч. - корни двучленного уравнения xn = а, где а - рациональное число. Например, А. ч. будут рациональные числа, числа
целыми А. ч. будут целые числа, числа
С понятием А. ч. тесно связаны два больших направления в теории чисел. 1) Арифметика А. ч. (алгебраическая теория чисел), созданная Э.
Куммером в середине 19 в., изучает свойства А. ч.
Целые А. ч. обладают рядом свойств, аналогичных свойствам целых рациональных чисел, однако теорема об единственности разложения
числа на простые множители не имеет места в теории целых А. ч. Для сохранения единственности разложения Куммер ввёл в рассмотрение т. н. "идеальные"
числа (см.
Идеал)
. 2) Теория приближения А. ч. изучает степень приближения А. ч. рациональными числами или алгебраическими же числами. Первым результатом в этом направлении была теорема Ж. Лиувилля (См.
Лиувилль)
, показывающая, что А. ч. "плохо" приближаются рациональными числами, точнее: если α - А. ч. степени n
, то при любых целых рациональных р и q имеет место неравенство [α - p/q] > C/q
n, где С = С(α) > 0 - постоянная, не зависящая от р и q, отсюда следует, что легко построить произвольное количество неалгебраических - трансцендентных чисел (См.
Трансцендентное число)
.
Лит.: Гекке Э., Лекции по теории алгебраических чисел, пер. с нем., М. - Л., 1940; Гельфонд А. О., Трансцендентные и алгебраические числа, М., 1952; Боревич З. И., Шафаревич И. P., Теория чисел, М., 1964.
А. А. Карацуба.