ЭЛЕКТРОЛИТЫ: ЭЛЕКТРОЛИЗ - определение. Что такое ЭЛЕКТРОЛИТЫ: ЭЛЕКТРОЛИЗ
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ЭЛЕКТРОЛИТЫ: ЭЛЕКТРОЛИЗ - определение

ВЕЩЕСТВО, РАСПАДАЮЩЕЕСЯ В РАСТВОРАХ ИЛИ РАСПЛАВАХ НА ИОНЫ
Электролиты
Найдено результатов: 21
ЭЛЕКТРОЛИТЫ: ЭЛЕКТРОЛИЗ      
К статье ЭЛЕКТРОЛИТЫ
Законы Фарадея. Электролизом называют химические процессы, протекающие под действием электрического тока на электродах, погруженных в электролит. Количество образовавшегося вещества связано с количеством электричества, пропущенного через электролит (сила тока . время), законами Фарадея: 1) количество вещества, образовавшегося на электроде при пропускании через электролит постоянного электрического тока, прямо пропорционально количеству пропущенного электричества, т.е. силе тока и времени электролиза; 2) для разных электродных процессов при одинаковом количестве электричества, пропущенного через электролит, массы образовавшихся веществ пропорциональны их химическим эквивалентам. (Эквивалентом элемента называется такое его количество, которое соединяется с 1 моль атомов водорода или замещает то же количество атомов водорода в химических реакциях, а эквивалентом сложного вещества называется такое его количество, которое взаимодействует без остатка с 1 экв. водорода или любого другого вещества. См. ЭКВИВАЛЕНТНАЯ МАССА
.)
Законы Фарадея справедливы как для растворов, так и для расплавов и применимы к обоим электродам. Количество электричества, необходимое для образования 1 экв. любого вещества, одинаково для всех веществ; оно равно 96 485 Кл и называется числом Фарадея или постоянной Фарадея (фундаментальная физическая константа). Эта закономерность широко применяется на практике. Исходя из количества затраченного электричества, можно рассчитать массу или толщину металлического покрытия, образующегося при гальваностегии, и наоборот, задав толщину покрытия, можно оценить, какое количество электричества для этого потребуется. Законы Фарадея лежат в основе работы вольтметра и приборов, предназначенных для измерения силы постоянного тока. См. также ЭЛЕКТРИЧЕСКИЕ ИЗМЕРЕНИЯ; ЭЛЕКТРОХИМИЯ.
Ионы. В 1833 М.Фарадей предположил, что ток через электролит переносят электрически заряженные частицы - ионы. Положительно заряженные ионы (например, ионы металлов и водорода), движущиеся через электролит по направлению к катоду, были названы катионами, а отрицательно заряженные, перемещающиеся к аноду, - анионами. Предполагалось, что на электродах ионы теряют заряд, при этом на катоде из катионов образуются атомы металла или водорода, а на аноде из анионов - галогены или кислород.
Эти представления - с незначительными изменениями - считаются справедливыми и сегодня. Положительным ионом (катионом) называют атом или группу атомов, утративших один или несколько электронов, а отрицательным ионом (анионом) - атом или группу атомов с одним или более избыточным электроном. На катоде катионы электролита приобретают недостающие электроны и нейтрализуют свой положительный заряд. Аналогично анионы отдают избыточные электроны, достигая анода. Если материал анода реакционноспособен, он может сам служить источником электронов, поскольку его атомы отдают электроны легче, чем анионы. Образующиеся катионы переходят при этом в раствор.
Поскольку для осаждения или нейтрализации 1 экв. любого вещества требуется одно и то же количество электричества, очевидно, что заряд, переносимый ионами, содержащимися в 1 экв., одинаков для всех веществ. Число эквивалентов в одном моле ионов равно валентности иона, поэтому число единичных зарядов (электронов), переносимых ионом, можно отождествить с его валентностью. Таким образом, у одновалентного катиона (например, Na+, K+, Ag+) недостает одного электрона по сравнению с нейтральным атомом; этот катион переносит единичный положительный заряд. У двухвалентного катиона (например, Ca2+, Zn2+, Cu2+) недостает двух электронов, он переносит два единичных положительных заряда и т.д. Единичный отрицательный заряд одновалентного аниона (Cl-, Br-) создается одним избыточным по отношению к нейтральному атому электроном.
ЭЛЕКТРОЛИТЫ         
вещества, обладающие ионной проводимостью; их называют проводниками второго рода - прохождение тока через них сопровождается переносом вещества. К электролитам относятся расплавы солей, оксидов или гидроксидов, а также (что встречается значительно чаще) растворы солей, кислот или оснований в полярных растворителях, например в воде. Известны и твердые электролиты. Чтобы пропустить электрический ток через раствор электролита, в него опускают две металлические или угольные пластины - электроды - и соединяют их с полюсами источника постоянного тока. Положительный электрод называют анодом, отрицательный - катодом. Прохождение тока через электролит сопровождается химическими реакциями на электродах. Так, на катоде, погруженном в расплав соли или оксида либо в раствор соли, обычно осаждается металл, входящий в состав электролита. На катоде, погруженном в водный раствор кислоты, основания либо соли щелочного или щелочноземельного металла, выделяется газообразный водород. На аноде, изготовленном из инертного материала, например платины или угля, в водном растворе выделяется газообразный кислород, а в концентрированных водных растворах хлоридов или в расплавленных хлоридах - хлор. Цинковые, медные или кадмиевые аноды под действием электрического тока сами постепенно растворяются; газ в этом случае не образуется.
См. также:
Электролиты         
(от Электро... и греч. lytos - разлагаемый, растворимый)

жидкие или твёрдые вещества и системы, в которых присутствуют в сколько-нибудь заметной концентрации ионы, обусловливающие прохождение электрического тока. В узком смысле Э. называются вещества, растворы которых проводят электрический ток ионами, образующимися в результате электролитической диссоциации (См. Электролитическая диссоциация). Э. в растворах подразделяют на сильные и слабые. Сильные Э. практически полностью диссоциированы на ионы в разбавленных растворах. К ним относятся многие неорганические соли и некоторые неорганические кислоты и основания в водных растворах, а также в растворителях, обладающих высокой диссоциирующей способностью (спирты, амиды и др.). Молекулы слабых Э. в растворах лишь частично диссоциированы на ионы, которые находятся в динамическом равновесии с недиссоциированными молекулами. К слабым Э. относится большинство органических кислот и многие органические основания в водных и неводных растворах. Деление Э. на сильные и слабые в некоторой степени условно, т. к. оно отражает не свойства самих Э., а их состояние в растворе. Последнее зависит от концентрации, природы растворителя, температуры, давления и др.

По количеству ионов, на которые диссоциирует в растворе одна молекула, различают бинарные, или одно-одновалентные, Э. (обозначаются 1-1 Э., например КС1), одно-двухвалентные Э. (обозначаются 1-2 Э., например CaCl2) и т. д. Э. типа 1-1, 2-2, 3-3 и т. п. называются симметричными, типа 1-2, 1-3 и т. п. - несимметричными.

Свойства разбавленных растворов слабых Э. удовлетворительно описываются классической теорией электролитической диссоциации. Для не слишком разбавленных растворов слабых Э., а также для растворов сильных Э. эта теория неприменима, поскольку они являются сложными системами, состоящими из ионов, недиссоциированных молекул или ионных пар, а также более крупных агрегатов. Свойства таких растворов определяются характером взаимодействий ион-ион, ион-растворитель, а также изменением свойств и структуры растворителя под влиянием растворённых частиц. Современные статистические теории сильных Э. удовлетворительно описывают свойства лишь очень разбавленных (<0,1 моль/л) растворов.

Э. чрезвычайно важны в науке и технике. Все жидкие системы в живых организмах содержат Э. Важный класс Э. - Полиэлектролиты. Э. являются средой для проведения многих химических синтезов и процессов электрохимических производств. При этом всё большую роль играют неводные растворы Э. Изучение свойств растворов Э. важно для создания новых химических источников тока (См. Химические источники тока) и совершенствования технологических процессов разделения веществ - экстракции (См. Экстракция) из растворов и ионного обмена (См. Ионный обмен).

А. И. Мишустин.

электролит         
м.
Химическое вещество или система, в которых перенос электричества осуществляется движением ионов.
электролит         
ЭЛЕКТРОЛ'ИТ, электролита, ·муж. (от слова электрический и ·греч. lytos - растворенный) (физ.). Раствор какого-нибудь вещества, способного разлагаться на составные части при электролизе.
ЭЛЕКТРОЛИТЫ         
(от электро ... и ...лит), жидкие или твердые вещества, в которых в сколько-нибудь заметных концентрациях присутствуют ионы, способные перемещаться и проводить электрический ток. В узком смысле - соли, растворы которых проводят электрический ток из-за наличия ионов, образующихся в результате электролитической диссоциации. Содержатся во всех жидких системах живых организмов, служат средой для проведения многих химических синтезов.
Электролит         
Электролит - Электролитами называют вещества, растворы и сплавыкоторых с другими веществами электролитически проводят гальваническийток. Признаком электролитической проводимости в отличие от металлическойдолжно считать возможность наблюдать химическое разложение данноговещества при более или менее продолжительном прохождении тока. Вхимически чистом состоянии Э. обыкновенно обладают ничтожно малойэлектропроводностью. Термин Э. введен в науку Фарадеем. К Э. до самогопоследнего времени относили типичные соли, кислоты и щелочи, а такжеводу. Исследования неводных растворов, а также исследования при оченьвысоких температурах значительно расширили эту область. И. А. Каблуков,Кади, Карара, П. И. Вальден и др. показали, что не только водные испиртовые растворы заметно проводят ток, но также растворы в целом рядедругих веществ, как например, в жидком аммиаке, жидком сернистомангидриде и т. п. Найдено также, что многие вещества и смеси их,превосходные изоляторы при обыкновенной температуре как например,безводные окислы металлов (окись кальция, магния и др.), при повышениитемпературы становятся электролитическими проводниками. Известная лампанакаливания Нернста, принцип которой был открыт гениальным Яблочковым,представляет превосходную иллюстрацию этих фактов. Смесь окислов -"тельце для накаливания" в лампе Нернста, не проводящая при обыкновеннойтемпер., при 700° делается превосходным и притом сохраняющим твердоесостояние электролитическим проводником. Можно предположить, чтобольшинство сложных веществ, изучаемых в неорганической химии, присоответствующих растворителях или при достаточно высокой температуре,могут приобрести свойства Э., за исключением, конечно, металлов и ихсплавов и тех сложных веществ, для которых будет доказана металлическаяпроводимость. В настоящий момент указания на металлическую проводимостьрасплавленного иодистого серебра и др. нужно считать еще недостаточнообоснованными. Иное должно сказать о большинстве веществ, содержащихуглерод, т. е. изучаемых в органической химии. Вряд ли найдутсярастворители, которые сделают углеводороды или их смеси (парафин,керосин, бензин и др.) проводниками тока. Однако, и в органической химиимы имеем постепенный переход от типичных Э. к типичным не электролитам:начиная с органических кислот к фенолам, содержащим в своем составенитрогруппу, к фенолам, не содержащим такой группы, к спиртам, водныерастворы которых принадлежат к изоляторам при небольшихэлектровозбудительных силах и, наконец, к углеводородам - типичнымизоляторам. Для многих органических, а также отчасти и некоторыхнеорганических соединений трудно ожидать, чтобы повышение температурысделало их Э., так как эти вещества раньше разлагаются от действиятеплоты. В таком неопределенном состоянии находился вопрос о том, что такоеЭ., до тех пор, пока не привлечена для решения его теорияэлектролитической диссоциации. Относительным числом электролитическихдиссоциированных молекул к не распавшимся молекулам и определяется,имеем ли мы дело с типичным Э. или с типичным не электролитом, или скаким-либо переходным случаем. Если число этих ионов настолько мало, чтони состав их, ни относительное число не поддается никаким измерительнымметодам, тогда перед нами случай типичного не электролита. Переходныеслучаи - это случаи, лежащие на границе наших измерительных методов, какчисло физических, так и применяемых при химическом анализе. Интересный вопрос возник в самое последнее время: может ли быть самоепростое тело Э.. П. И. Вальден нашел, что растворы брома в жидкомсернистом ангидриде, растворы йода в эфире и треххлористом мышьякезаметно проводят ток. Должно ли признать, что молекула йода J2распадается на ионы электроположительный катион J· и Jў -электроотрицательный анион. Однако, уже П. И. Вальден указывает на малуювероятность такого явления и предполагает, что бром и йод дают срастворителем определенные химические соединения, которые уже в своюочередь распадаются на ионы. В заключение должно упомянуть об определении Э., данном маститымГитторфом пятьдесят лет тому назад: "Э. - это соли". Этим определениемГитторф частью предвосхитил современную теорию электролитическойдиссоциации, указав на то, что типичное свойство солей, которое мытеперь определяем, как способность к электролитической диссоциации,должно быть признаком всякого Э. Вл. Кистяковский. Электрон - у грековтак назывался янтарь, добывавшийся финикиянами на берегах Немецкогоморя. Ценился он очень высоко и составлял значительный предмет торговли.Насколько он представлялся ценным в глазах древних греков, видно хотя быиз того обстоятельства, что тем же именем они называли сплав золота исеребра, по цвету напоминавший янтарь. Из этого сплава делалисьразличного рода украшения, утварь и т. п. Прекрасным образцом работы изЭ. может служить хотя бы знаменитая никопольская ваза, найденная в одномиз южнорусских курганов и хранящаяся в Петербурге, в Имп. Эрмитаже.
ЭЛЕКТРОЛИТ         
а, м.
Химическое вещество, в котором перенос электричества осуществляется движением ионов.
Электролит         
Электроли́т — вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит в растворах и расплавах, или движения ионов в кристаллических решётках твёрдых электролитов. Примерами электролитов могут служить кислоты, соли, основания и некоторые кристаллы (например, иодид серебра, диоксид циркония).
Электролиз         
  • электролитической ячейки]] для исследования электролиза
  • [[Анод]]ы
  • Цех электролиза меди завода «[[Уралэлектромедь]]».Катоды опущены в ванны с [[электролит]]ом
  • [[Катод]]ы
ВЫДЕЛЕНИЕ НА ЭЛЕКТРОДАХ СОСТАВНЫХ ЧАСТЕЙ РАСТВОРЁННЫХ ВЕЩЕСТВ ИЛИ ПРОДУКТОВ РЕАКЦИЙ, ПРОТЕКАЮЩИХ НА ЭЛЕКТРОДАХ
Электросинтез
(от Электро... и греч. lysis - разложение, растворение, распад)

совокупность процессов электрохимического окисления-восстановления (См. Окисление-восстановление) на погруженных в электролит (См. Электролиты) электродах при прохождении через него электрического тока. Э. лежит в основе электрохимического метода лабораторного и промышленного получения различных веществ - как простых (Э. в узком смысле слова), так и сложных (Электросинтез).

Изучение и применение Э. началось в конце 18 - начале 19 вв., в период становления электрохимии (См. Электрохимия). Для разработки теоретических основ Э. большое значение имело установление М. Фарадеем (См. Фарадей) в 1833-34 точных соотношений между количеством электричества, прошедшего при Э., и количеством вещества, выделившегося на электродах (см. Фарадея законы). Промышленное применение Э. стало возможным после появления в 70-х гг. 19 в. мощных генераторов постоянного тока.

Особенность Э. - пространственное разделение процессов окисления и восстановления: электрохимическое окисление происходит на аноде, восстановление - на катоде. Э. осуществляется в специальных аппаратах - электролизёрах (См. Электролизёры).

Э. происходит за счёт подводимой энергии постоянного тока и энергии, выделяющейся при химических превращениях на электродах. Энергия при Э. расходуется на повышение гиббсовой энергии (См. Гиббсова энергия) системы в процессе образования целевых продуктов и частично рассеивается в виде теплоты при преодолении сопротивлений в электролизёре и в других участках электрической цепи.

На катоде в результате Э. происходит восстановление ионов или молекул электролита с образованием новых продуктов. Катионы принимают электроны и превращаются в ионы более низкой степени окисления или в атомы, например при восстановлении ионов железа (F3+e- → Fe2+), электроосаждении меди (Cu2+ + 2e-→ Cu). Нейтральные молекулы могут участвовать в превращениях на катоде непосредственно или реагировать с промежуточными продуктами катодного процесса. На аноде в результате Э. происходит окисление ионов или молекул, находящихся в электролите или принадлежащих материалу анода (анод растворяется или окисляется), например: выделение кислорода (4OH-→ 4e- + 2H2O + O2) и хлора (2C1-→2e- + Cl2), образование хромата (Cr3+ + 3OH- + H2O → CrO42- + 5H+ + 3e-), растворение меди (Cu → Cu2+ + 2e-), оксидирование алюминия (2Al + 3H2O → Al2O3 +6Н+ + 6e-). Электрохимическая реакция получения того или иного вещества (в атомарном, молекулярном или ионном состоянии) связана с переносом от электрода в электролит (или обратно) одного или нескольких зарядов в соответствии с уравнением химической реакции. В последнем случае такой процесс осуществляется, как правило, в виде последовательности элементарных одноэлектронных реакций, то есть постадийно, с образованием промежуточных ионов или радикальных частиц на электроде, часто остающихся на нём в адсорбированном состоянии.

Скорости электродных реакций зависят от состава и концентрации электролита, от материала электрода, электродного потенциала, температуры и ряда других факторов. Скорость каждой электродной реакции определяется скоростью переноса электрических зарядов через единицу поверхности электрода в единицу времени; мерой скорости, следовательно, служит плотность тока.

Количество образующихся при Э. продуктов определяется законами Фарадея. Если на каждом из электродов одновременно образуется ряд продуктов в результате нескольких электрохимических реакций, доля тока (в \%), идущая на образование продукта одной из них, называется выходом данного продукта по току.

Преимущества Э. перед химическим методами получения целевых продуктов заключаются в возможности сравнительно просто (регулируя ток) управлять скоростью и селективной направленностью реакций. Условия Э. легко контролировать, благодаря чему можно осуществлять процессы как в самых "мягких", так и в наиболее "жёстких" условиях окисления или восстановления, получать сильнейшие окислители и восстановители, используемые в науке и технике. Э. - основной метод промышленного производства алюминия, хлора и едкого натра, важнейший способ получения фтора, щелочных и щелочноземельных металлов, эффективный метод рафинирования металлов. Путём Э. воды производят водород и кислород. Электрохимический метод используется для синтеза органических соединений различных классов и многих окислителей (персульфатов, перманганатов, перхлоратов, перфторорганических соединений и др.). Применение Э. для обработки поверхностей включает как катодные процессы гальванотехники (См. Гальванотехника) (в машиностроении, приборостроении, авиационной, электротехнической, электронной промышленности), так и анодные процессы полировки, травления, размерной анодно-механической обработки (См. Анодно-механическая обработка), оксидирования (анодирования (См. Анодирование)) металлических изделий (см. также Электрофизические и электрохимические методы обработки). Путём Э. в контролируемых условиях осуществляют защиту от коррозии металлических сооружений и конструкций (анодная и катодная защита).

Лит. см. при ст. Электрохимия.

Э. В. Касаткин.

Википедия

Электролит

Электроли́т — вещество, которое проводит электрический ток вследствие диссоциации на ионы, что происходит в растворах и расплавах, или движения ионов в кристаллических решётках твёрдых электролитов. Примерами электролитов могут служить кислоты, соли, основания и некоторые кристаллы (например, иодид серебра, диоксид циркония). Электролиты — проводники второго рода, вещества, электропроводность которых обусловлена подвижностью положительно или отрицательно заряженных ионов.

Что такое ЭЛЕКТРОЛИТЫ: ЭЛЕКТРОЛИЗ - определение