Электрическое поле атмосферы - определение. Что такое Электрическое поле атмосферы
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Электрическое поле атмосферы - определение

Электрическое поле атмосферы; Электрические токи в атмосфере; Грозовое электричество; Электрополе атмосферы
  • [[Молния]]
Найдено результатов: 269
Электрическое поле атмосферы         

стационарное электрическое поле, создаваемое электрическими объёмными зарядами (См. Электрический объёмный заряд) в атмосфере, собственным зарядом Земли и зарядами, индуцированными в атмосфере. Характеристики Э. п. а. - напряжённость поля и его потенциал - зависят также от распределения проводимости атмосферы (См. Проводимость атмосферы), а следовательно, от метеорологических факторов: туманов, облаков, осадков, метелей, запыления и ионизации атмосферы, вулканических извержений и т. д. Поэтому Э. п. а. в разных точках атмосферы различно и испытывает значительные изменения во времени. Вблизи земной поверхности напряжённость Э. п. а. зависит от формы рельефа - она усиливается около выступающих элементов ландшафта, строений, высотных мачт и ослабевает во впадинах рельефа, на улицах городов и т. д. См. Атмосферное электричество.

Лит.: Имянитов И, М., Чубарина Е. В., Электричество свободной атмосферы, Л., 1965; Имянитов И. М., Чубарина Е. В., Шварц Я. М., Электричество облаков, Л., 1971; Чалмерс Дж. А., Атмосферное электричество, пер. с англ., Л., 1974.

И. М. Имянитов.

Атмосферное электричество         

1) совокупность электрических явлений и процессов в атмосфере (См. Атмосфера),

2) раздел физики атмосферы, изучающий электрические явления в атмосфере и её электрические свойства. При исследовании А. э. изучают электрическое поле в атмосфере, её ионизацию (См. Ионизация) и проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое др. Все проявления А. э. тесно связаны между собой и на их развитие сильно влияют метеорологические факторы - облака, осадки, метели и т. п. К области А. э. обычно относят процессы, происходящие в тропосфере (См. Тропосфера) и стратосфере (См. Стратосфера).

Начало А. э. как науке было положено в 18 в. американским учёным Б. Франклином, экспериментально установившим электрическую природу молнии, и русским учёным М. В. Ломоносовым - автором первой гипотезы, объясняющей электризацию грозовых облаков. В 20 в. были открыты проводящие слои атмосферы, лежащие на высоте более 60-100 км (Ионосфера, Магнитосфера Земли), установлена электрическая природа полярных сияний (См. Полярные сияния) и обнаружен ряд других явлений, изучению которых посвящены соответствующие науки, выделившиеся из А. э. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами. Две основные современные теории А. э. были созданы английским учёным Ч. Вильсоном и советским учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, - поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.

А. э. данного района зависит от глобальных и локальных факторов. Районы, где отсутствуют скопления аэрозолей (См. Аэрозоли) и источники сильной ионизации, рассматриваются как зоны "хорошей", или "ненарушенной" погоды, здесь преобладают глобальные факторы. В зонах "нарушенной" погоды (в районах гроз, пыльных бурь, осадков и др.) преобладают локальные факторы.

Электрическое поле атмосферы. В тропосфере все облака и осадки, туманы, пыль обычно электрически заряжены; даже в чистой атмосфере постоянно существует электрическое поле. Исследования в зонах "хорошей" погоды, начатые в 19 в., показали, что у земной поверхности существует стационарное электрическое поле с напряжённостью Е, в среднем равной около 130 в/м. Земля при этом имеет отрицательный заряд, равный около 3 105 к, а атмосфера в целом заряжена положительно. Однако при осадках и особенно грозах, метелях, пылевых бурях и т. п. напряжённость поля может резко менять направление и величину, достигая иногда 1000 в/м. Наибольшие значения Е имеет в средних широтах, а к полюсам и экватору убывает. В зонах "хорошей" погоды Е с высотой в целом уменьшается, например над океанами. Вблизи земной поверхности, в т. н. слое перемешивания толщиной 300-3000 м, где скапливаются аэрозоли, Е может с высотой возрастать (рис. 1). Выше слоя перемешивания Е убывает с высотой по экспоненциальному закону и на высоте 10 км не превышает несколько в/м. Это убывание Е связано с тем, что в атмосфере содержатся положительные объёмные заряды, плотность которых также быстро убывает с высотой.

Разность потенциалов между Землёй и ионосферой составляет 200-250 кв.

Напряжённость электрического поля Е меняется во времени. Наряду с локальными суточными и годовыми вариациями Е отмечаются синхронные для всех пунктов суточные (см. кривые 1 и 2, рис. 2) и годовые вариации Е - т.н. унитарные вариации. Унитарные вариации связаны с изменением электрического заряда Земли в целом, локальные - с изменениями величины и распределения по высоте объёмных электрических зарядов в атмосфере в данном районе.

Электрическая проводимость атмосферы. Электрическое состояние атмосферы в значительной степени определяется её электрической проводимостью λ, которая создаётся ионами, находящимися в атмосфере. Наличие ионов в атмосфере и является причиной потери заряда изолированным заряженным телом при соприкосновении с воздухом (явление, открытое в конце 18 в. французским физиком Ш. Кулоном). Электрическая проводимость λ зависит от количества ионов, содержащихся в единице объёма (их концентрации), и их подвижности. Основной вклад в λ вносят лёгкие ионы, обладающие наибольшей подвижностью u > 10-5м2 сек-1 в-1.

Электрическая проводимость атмосферы очень мала и может сравниться с проводимостью хороших изоляторов. У земной поверхности в среднем λ = (1 - 2)·10-18 ом-1 м-1 и увеличивается с высотой примерно по экспоненциальному закону; на высоте около 30 км λ достигает значений, почти в 150 раз больших, чем у земной поверхности. Выше проводимость увеличивается ещё более, причём особенно резко с высот, до которых проникают ионизующие излучения Солнца и где начинается образование ионосферы, проводимость которой приблизительно в 1012 раз больше, чем в атмосфере вблизи земной поверхности.

Основные ионизаторы атмосферы: 1) космические лучи, действующие во всей толще атмосферы; 2) излучение радиоактивных веществ, находящихся в Земле и воздухе; 3) ультрафиолетовое и корпускулярное излучения Солнца, ионизующее действие которых заметно проявляется на высотах более 50-60 км. Концентрация легких; ионов возрастает с увеличением интенсивности ионизации и уменьшением концентрации частиц в атмосфере, поэтому концентрация лёгких ионов растет с высотой. Этот факт в сочетании с увеличением подвижности ионов при уменьшении плотности воздуха объясняет характер изменения λ и Е с изменением высоты.

Электрический ток в атмосфере. Движение ионов под действием сил электрического поля создаёт в атмосфере вертикальный ток проводимости in = Eλ, со средней плотностью, равной около (2-3)·10-12 а/м2. Т. о., в зонах "хорошей" погоды сила тока на всю поверхность Земли составляет около 1800 а. Время, в течение которого заряд Земли за счёт токов проводимости атмосферы уменьшился бы до 1/е ≈ 0,37 от своего первоначального значения, равно Атмосферное электричество 500 сек. Т. к. заряд Земли в среднем не меняется, то очевидно, что существуют "генераторы" А. э., заряжающие Землю. Помимо токов проводимости, в атмосфере текут значительные электрические диффузионные и конвективные токи.

"Генераторы" атмосферного электричества. "Генераторами" А. э. в зонах нарушенной погоды являются пылевые бури и извержения вулканов, метели и разбрызгивание воды прибоем и водопадами, облака и осадки, пар и дым промышленных источников и т. д. При почти всех перечисленных явлениях электризация может проявляться весьма бурно: извержение вулканов, песчаные бури и даже метели приводят иногда к образованию молний (См. Молния), всё же наибольший вклад в электризацию атмосферы вносят облака и осадки.

По мере укрупнения частиц облака, увеличения его толщины, усиления осадков из него растет его электризация. Так, в слоистых и слоисто-кучевых облаках плотность объёмных зарядов ρ ≈ 3 10-12 к/км3, что приблизительно в 10 раз превышает их плотность в чистой атмосфере, а в грозовых облаках ρ доходит до 3·10-8 к/м3. Облака могут быть заряжены положительно в верхней части и отрицательно в нижней, но могут иметь и противоположную полярность, а также преимущественный заряд одного знака. Плотность тока осадков на Землю из слоисто-дождевых облаков ioc = 10-12 а/м2, в то время как из грозовых ioc = 10-9а/м2. Полная сила тока, текущего на Землю от одного грозового облака, в средних широтах равна около -(0,01-0,1) а, а ближе к экватору до -(0,5-1,0) а. Сила токов, текущих в самих этих облаках, в 10-100 раз больше силы токов, притекающих к Земле. Т. о., Гроза в электрическом отношении подобна короткозамкнутому генератору.

При высоких значениях электрического поля у земной поверхности порядка 500-1000 в/м начинается электрический разряд с острых вытянутых предметов (травы, деревьев, мачт, труб и т.д.), который иногда становится видимым (т. н. огни св. Эльма, особенно яркие в горах и на море, см. Эльма огни). Возникающие при метелях, ливнях и особенно грозах токи коронирования способствуют обмену зарядами между Землёй и атмосферой.

Т. о., электрическое поле Земли и ток Земля - атмосфера в зонах хорошей погоды поддерживаются процессами в зонах нарушенной погоды. На земном шаре одновременно существует около 1800 гроз (см. кривую 3, рис. 2); суммарная сила тока от них, заряжающего Землю отрицательным зарядом, доходит до 1000 а. Облака слоистых форм, хотя и менее активные, чем грозовые, но зато покрывающие около половины земной поверхности, также вносят существенный вклад в поддержание электрического поля Земли. Исследования А. э. позволяют выяснить природу процессов, ведущих к колоссальной электризации грозовых облаков, в целях прогноза и управления ими; выяснить роль электрических сил в образовании облаков и осадков; они дадут возможность снижения электризации самолётов и увеличения безопасности полётов, а также раскрытия тайны образования шаровой молнии.

Лит.: Френкель Я. И., Теория явлений атмосферного электричества, Л.-М. 1949; Тверской П. Н., Атмосферное электричество, Л., 1949; Имянитов И. М., Приборы и методы для изучения электричества атмосферы, М., 1957; Имянитов И. М. и Шифрин К. С., Современное состояние исследований атмосферного электричества, "Успехи физических наук", 1962, т. 76, в. 4, с. 593; Имянитов И. М. и Чубарина Е. В., Электричество свободной атмосферы, Л., 1965.

И. М. Имянитов.

Рис. 1. Изменение напряжённости электрич. поля Е с высотой Н. 1 - Ленинград; 2 - Киев: 3 - Ташкент.

Рис. 2. Суточный ход унитарной вариации напряжённости электрич. поля Е: 1 - над океанами; 2 - в полярных областях; 3 - изменение площади S, занятой грозами, в течение суток.

АТМОСФЕРНОЕ ЭЛЕКТРИЧЕСТВО         
,..1) электрические явления в атмосфере: ионизация воздуха, электрическое поле атмосферы, электрические заряды облаков и осадков, электрические токи и разряды в атмосфере и т. д...2) Раздел физики атмосферы, изучающий эти явления.
Электрическое поле         
ОДИН ИЗ ДВУХ КОМПОНЕНТОВ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ, ВОЗНИКАЮЩЕЕ ПРИ ИЗМЕНЕНИИ МАГНИТНОГО ПОЛЯ
Однородное электрическое поле; Электрополе

частная форма проявления (наряду с магнитным полем) электромагнитного поля (См. Электромагнитное поле), определяющая действие на электрический заряд силы, не зависящей от скорости его движения. Представление об Э. п. было введено в науку М. Фарадеем (См. Фарадей) в 30-х гг. 19 в. Согласно Фарадею, каждый покоящийся заряд создаёт в окружающем пространстве Э. п. Поле одного заряда действует на другой заряд, и наоборот; так осуществляется взаимодействие зарядов (концепция близкодействия). Основная количественная характеристика Э. п. - Напряжённость электрического поля Е, которая определяется как отношение силы F, действующей на заряд, к величине заряда q, Е = F/q. Э. п. в среде наряду с напряжённостью характеризуется вектором электрической индукции (см. Индукция электрическая и магнитная). Распределение Э. п. в пространстве наглядно изображается с помощью силовых линий (См. Силовые линии)напряжённости Э. п. Силовые линии потенциального Э. п., порождаемого электрическими зарядами, начинаются на положительных зарядах и оканчиваются на отрицательных. Силовые линии вихревого Э. п., порождаемого переменным магнитным полем, замкнуты.

Напряжённость Э. п. удовлетворяет принципу суперпозиции, согласно которому в данной точке пространства напряжённость поля Е, создаваемого несколькими зарядами, равна сумме напряжённостей полей (E1, E2, E2,...) отдельных зарядов: Е = E1 + E2 + E3 +... Суперпозиция полей вытекает из линейности Максвелла уравнений (См. Максвелла уравнения).

Лит.: Тамм И. Е., Основы теории электричества, 9 изд., М., 1976, гл. 1, 6; Калашников С. Г., Электричество, 4 изд., М., 1977 (Общий курс физики), гл. 2, 13.

Г. Я. Мякишев.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ         
ОДИН ИЗ ДВУХ КОМПОНЕНТОВ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ, ВОЗНИКАЮЩЕЕ ПРИ ИЗМЕНЕНИИ МАГНИТНОГО ПОЛЯ
Однородное электрическое поле; Электрополе
частная форма проявления электромагнитного поля; создается электрическими зарядами или переменным магнитным полем и характеризуется напряженностью электрического поля.
Электрическое поле         
ОДИН ИЗ ДВУХ КОМПОНЕНТОВ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ, ВОЗНИКАЮЩЕЕ ПРИ ИЗМЕНЕНИИ МАГНИТНОГО ПОЛЯ
Однородное электрическое поле; Электрополе
Электрическое поле — особый вид материи, который окружает каждый электрический заряд и оказывает силовое воздействие на все другие заряды, притягивая или отталкивая их.Browne, p 225: «… around every charge there is an aura that fills all space. This aura is the electric field due to the charge. The electric field is a vector field… and has a magnitude and direction.» Электрические поля возникают из-за электрических зарядов или изменяющихся во времени магнитных полей.
Потенциальное поле         
ВЕКТОРНОЕ ПОЛЕ, ПРЕДСТАВЛЯЕМОЕ КАК ГРАДИЕНТ НЕКОТОРОЙ ФУНКЦИИ
Потенциальное поле; Градиентное поле; Безвихревое векторное поле

консервативное поле, векторное поле, циркуляция которого вдоль любой замкнутой траектории равна нулю. Если П. п. - силовое поле, то это означает равенство нулю работы сил поля вдоль замкнутой траектории. Для П. п. а (М) существует такая однозначная функция u (М) (Потенциал поля), что а = gradu (см. Градиент). Если П. п. задано в односвязной области Ω, то потенциал этого поля может быть найден по формуле

,

в которой AM - любая гладкая кривая, соединяющая фиксированную точку А из Ω с точкой М, t - единичный вектор касательной кривой AM и / - длина дуги AM, отсчитываемая от точки А. Если а (М) - П. п., то rot a = 0 (см. Вихрь векторного поля). Обратно, если rot а = 0 и поле задано в односвязной области и дифференцируемо, то а (М) - П. п. Потенциальными являются, например, электростатическое поле, поле тяготения, поле скоростей при безвихревом движении.

Потенциальное векторное поле         
ВЕКТОРНОЕ ПОЛЕ, ПРЕДСТАВЛЯЕМОЕ КАК ГРАДИЕНТ НЕКОТОРОЙ ФУНКЦИИ
Потенциальное поле; Градиентное поле; Безвихревое векторное поле
Потенциальное (или безвихревое) векторное поле в математике — векторное поле, которое можно представить как градиент некоторой скалярной функции координат. Необходимым условием потенциальности векторного поля в трёхмерном пространстве является равенство нулю ротора поля.
ЗАГРЯЗНЕНИЕ ВОЗДУХА         
  • Загрязнение воздуха тепловозом
ПРИНЕСЕНИЕ В АТМОСФЕРНЫЙ ВОЗДУХ НОВЫХ, НЕХАРАКТЕРНЫХ ДЛЯ НЕГО ФИЗИЧЕСКИХ, ХИМИЧЕСКИХ И БИОЛОГИЧЕСКИХ ВЕЩЕСТВ ИЛИ ИЗМЕНЕНИЕ ИХ ЕСТЕСТВЕНН
Загрязнение воздуха; Загрязнение атмосферы
любое нежелательное изменение состава земной атмосферы в результате поступления в нее различных газов, водяного пара и твердых частиц (под воздействием природных процессов или в результате деятельности человека).
Примерно 10% загрязнителей попадают в атмосферу вследствие таких природных процессов, как, например, вулканические извержения, которые сопровождаются выбросами в атмосферу пепла, распыленных кислот, в том числе серной, и множества ядовитых газов. Кроме того, основными источниками серы в атмосфере служат брызги морской воды и разлагающиеся растительные остатки. Также следует отметить лесные пожары, в результате которых образуются плотные клубы дыма, обволакивающие значительные площади, и пыльные бури. Деревья и кустарники выделяют много летучих органических соединений (ЛОС), образующих голубую дымку, которая закрывает бльшую часть гор Блу-Ридж в США (в переводе "голубой хребет"). Присутствующие в воздухе микроорганизмы (пыльца, плесневые грибы, бактерии, вирусы) вызывают у многих людей приступы аллергии и инфекционные заболевания.
Остальные 90% загрязнителей имеют антропогенное происхождение. Основными их источниками являются: сжигание ископаемого топлива на электростанциях (выбросы дыма) и в двигателях автомобилей; производственные процессы, не связанные с сжиганием топлива, но приводящие к запылению атмосферы, например вследствие эрозии почв, добычи угля открытым способом, взрывных работ и утечки ЛОС через клапаны, стыки труб на нефтеперегонных и химических заводах и из реакторов; хранение твердых отходов; а также разнообразные смешанные источники.
Загрязняющие вещества, попадая в атмосферу, переносятся на большие расстояния от источника, а затем возвращаются на земную поверхность в виде твердых частиц, капель или химических соединений, растворенных в атмосферных осадках.
Химические соединения, источник которых находится на уровне земли, быстро смешиваются с воздухом нижних слоев атмосферы (тропосферы). Они называются первичными загрязняющими веществами. Некоторые из них вступают в химические реакции с другими загрязнителями или с основными компонентами воздуха (кислородом, азотом и водяным паром), образуя вторичные загрязняющие вещества. В результате наблюдаются такие явления, как фотохимический смог, кислотные дожди и образование озона в приземном слое атмосферы. Источником энергии для этих реакций служит солнечная радиация. Вторичные загрязнители - содержащиеся в атмосфере фотохимические окислители и кислоты - представляют главную опасность для здоровья человека и глобальных изменений окружающей среды.
См. также:
Загрязнение атмосферы Земли         
  • Загрязнение воздуха тепловозом
ПРИНЕСЕНИЕ В АТМОСФЕРНЫЙ ВОЗДУХ НОВЫХ, НЕХАРАКТЕРНЫХ ДЛЯ НЕГО ФИЗИЧЕСКИХ, ХИМИЧЕСКИХ И БИОЛОГИЧЕСКИХ ВЕЩЕСТВ ИЛИ ИЗМЕНЕНИЕ ИХ ЕСТЕСТВЕНН
Загрязнение воздуха; Загрязнение атмосферы
Загрязнение атмосферы Земли или загрязнение воздуха — происходит, когда в атмосферу Земли попадают вредные или избыточные количества веществ, включая газы (такие как диоксид углерода, монооксид углерода, диоксид серы, оксиды азота, метан и хлорфторуглероды), частицы (как органические, так и неорганические) и биологические молекулы. Это может вызвать заболевания, аллергию и даже смерть людей, также это может нанести вред другим живым организмам, таким как животные и продовольственные культуры, может нанести ущерб и естественной или искусственной экос�

Википедия

Атмосферное электричество

Атмосфе́рное электри́чество — совокупность электрических явлений в атмосфере, а также раздел физики атмосферы, изучающий эти явления. При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и электрическую проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды, явления турбулентности, атмосферные электрические структуры. Все проявления атмосферного электричества тесно связаны между собой и на их развитие сильно влияют локальные метеорологические факторы. К области атмосферного электричества обычно относят процессы, происходящие в тропосфере и стратосфере.

Начало изучению атмосферного электричества было положено в XVIII веке американским учёным Бенджамином Франклином, экспериментально установившим электрическую природу молнии, и русским учёным Михаилом Ломоносовым — автором первой гипотезы, объясняющей электризацию грозовых облаков. В XX веке были открыты проводящие слои атмосферы, лежащие на высоте более 60—100 км (ионосфера, магнитосфера Земли), установлена электрическая природа полярных сияний и обнаружен ряд других явлений. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами.

Две основные современные теории атмосферного электричества были созданы английским учёным Чарлзом Вильсоном и советским учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, — поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.

Исследования атмосферного электричества позволяют выяснить природу процессов, ведущих к колоссальной электризации грозовых облаков, в целях прогноза и управления ими; выяснить роль электрических сил в образовании облаков и осадков; они дадут возможность снижения электризации самолётов и увеличения безопасности полётов, а также раскрытия тайны образования шаровой молнии.

Что такое Электр<font color="red">и</font>ческое п<font color="red">о</font>ле атмосф<font color="re