Электродные процессы - определение. Что такое Электродные процессы
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Электродные процессы - определение

Тепловые процессы; Термодинамический процесс; Термодинамические процессы; Обратимые и необратимые процессы
Найдено результатов: 94
Электродные процессы      

электрохимические превращения на границе электрод/электролит, при которых через эту границу происходит перенос заряда, проходит электрический ток. В зависимости от направления перехода электронов (с электрода на вещество или наоборот) различают катодные и анодные Э. п., приводящие соответственно к восстановлению веществ. Пространственное разделение процессов окисления и восстановления используется в химических источниках тока (См. Химические источники тока) и при электролизе. Точной мерой скорости Э. п. служит плотность тока (a/см2). Особенностью Э. п. является зависимость их скорости от электродного потенциала (См. Электродный потенциал), а также от строения двойного электричеческого слоя (См. Двойной электрический слой) и наличия адсорбированных частиц на межфазной границе. Скорость Э. п. увеличивается по мере возрастания перенапряжения (См. Перенапряжение). При равновесном потенциале достигается динамическое равновесие, при котором ток через электрод не протекает, однако через границу фаз идёт непрерывный обмен носителями зарядов - ионами или электронами (т. н. ток обмена - один из основных кинетических параметров Э. п.). Скорость Э. п. может меняться в очень широких пределах в зависимости от природы электрода. Так, ток обмена при электрохимическом процессе выделения водорода из водных растворов кислот варьирует от 10-12 а/см2 для ртутного электрода до 0,1 а/см2 для платинового. На скорость Э. п. влияют концентрация реагирующих частиц и температура.

Простейшие Э. п. - реакции переноса электрона типа Fe2+ → Fe3+ + е. Перенос электронов может сопровождаться разрывом химических связей и переходом атомов от исходного вещества к продукту реакции, например C6H5NO2 + 6H+ + 6е → C6H5NH2 + 2H2O. Более сложные Э. п. сопровождаются образованием новой фазы. К ним относятся катодное осаждение и анодное растворение металлов, например Ag+ + е → Ag, а также выделение и ионизация газов, например 2H+ + 2e ↔ H2. Одной из стадий Э. п. всегда является стадия разряда-ионизации, т. е. переход заряженной частицы через границу фаз. Эта стадия - электрохимический элементарный акт суммарного процесса. Э. п. включают как стадии доставки реагирующего вещества к поверхности электрода, так и отвода продуктов реакции в объём раствора. Э. п. могут включать также химические стадии, предшествующие стадии разряда-ионизации или протекающие после неё. Широко применяемые в технике электродные процессы описаны в статьях Гальванотехника, Электрометаллургия, Электрофизические и электрохимические методы обработки, Анодирование.

В. В. Лосев.

ЭЛЕКТРОДНЫЕ ПРОЦЕССЫ      
(электродные реакции) , связаны с переносом электронов через границу раздела фаз электрод - электролит. В зависимости от направления переноса электронов различают катодные и анодные электродные процессы, приводящие соответственно к восстановлению или окислению вещества электрода. Электродные процессы идут, напр., при электролизе.
Энергетические процессы в клетке         
Энергетические процессы в клетке — процессы обмена веществ, обеспечивающие снабжение клеток энергией для выполнения актов жизнедеятельности. В основном они относятся к процессам катаболизма, так как среди них важное значение имеет расщепление богатых энергией (питательных) веществ.
Фотографические процессы         
СТАТЬЯ-СПИСОК В ПРОЕКТЕ ВИКИМЕДИА
Фотографический процесс; Типографические процессы
Фотографические процессы — совокупность технологий, позволяющая получить фотографическое изображение на фотоматериалах.
Электродный водонагреватель         
Электродный водонагреватель — электрический водонагреватель, не использующий нагревательных элементов.
Гипергенные процессы         
СОВОКУПНОСТЬ ПРОЦЕССОВ ХИМИЧЕСКИХ И ФИЗИЧЕСКИХ ПРЕОБРАЗОВАНИЯ МИНЕРАЛОВ И ГОРНЫХ ПОРОД В ВЕРХНЕЙ ЧАСТИ ЗЕМНОЙ КОРЫ И НА ЕЁ ПОВЕРХНОСТИ
Гипергенные процессы

процессы химического и физического преобразования минерального вещества в верхних частях земной коры и на её поверхности под воздействием атмосферы, гидросферы и живых организмов при низких температурах. Г. п. заключаются в химическом разложении, растворении, гидролизе, гидратации, окислении, карбонатизации и др. явлениях.

Под влиянием Г. п. происходят: образование коры выветривания и зоны окисления месторождений, почвообразование, формирование состава подземных вод, рек, озёр, морей и океана, хемогенное и биогенное осадкообразование, диагенез и ранний эпигенез осадков.

Если для эндогенных процессов главными факторами служат температура и давление, то в Г. п. ведущие факторы - щёлочность или кислотность среды и окислительно-восстановительный потенциал. Широко развиты коллоидно-химические процессы, в частности сорбция, а кроме того - раскристаллизация гелей, переосаждение и явления ионного обмена, большую роль играют биогеохимические процессы. Важнейшим внешним фактором Г. п. является климат, а закономерностью размещения Г. п. на поверхности Земли - зональность, впервые установленная В. В. Докучаевым (зональность почв, коры выветривания, континентальных отложений, грунтовых вод и т.д.). В результате Г. п. образуются месторождения ценных полезных ископаемых (см. Гипергенные месторождения).

Лит.: Страхов Н. М., Типы литогенеза и их эволюция в истории Земли, М., 1963; Перельман А. И., Геохимия эпигенетических процессов (Зона гипергенеза), 3 изд., М., 1968.

В. В. Щербина.

Тепловой процесс         
Тепловой процесс (термодинамический процесс) — изменение макроскопического состояния термодинамической системы. Если разница между начальным и конечным состояниями системы бесконечно мала, то такой процесс называют элементарным (инфинитезимальным).
Тепловой процесс         

термодинамический процесс, изменение состояния физической системы (рабочего тела (См. Рабочее тело)) в результате теплообмена и совершения работы. Если Т. п. протекает настолько медленно, что в каждый момент рабочее тело будет находиться в равновесии термодинамическом (См. Равновесие термодинамическое), то он является равновесным, в противном случае Т. п. - неравновесный процесс (См. Неравновесные процессы). Если Т. п. можно провести в обратном направлении через ту же последовательность промежуточных состояний, то он называется обратимым процессом (См. Обратимый процесс) (такой Т. п. должен быть равновесным). Все реальные Т. п. - Необратимые процессы, поскольку они осуществляются с конечными скоростями, при конечных разностях температур между источником теплоты и рабочим телом и сопровождаются трением и потерями теплоты в окружающую среду.

Т. п. могут происходить при постоянных давлении (Изобарный процесс), температуре (Изотермический процесс), объёме (Изохорный процесс). Т. п., протекающий без теплообмена с окружающей средой, называется адиабатным процессом (См. Адиабатный процесс); при обратимом адиабатном процессе Энтропия системы остаётся постоянной, то есть процесс изоэнтропийный. Необратимый адиабатный процесс сопровождается увеличением энтропии. Т. п., при котором остаётся постоянной Энтальпия (теплосодержание) системы, - изоэнтальпийный процесс. Круговые процессы (См. Круговой процесс), при осуществлении которых производятся работа, теплота или холод, в технике называются циклами (см. Карно цикл, Ранкина цикл, Холодильные циклы. Цикл двигателя).

И. Н. Розенгауз.

Графическое изображение тепловых процессов на диаграмме р - V (давление - объём): 1 - изобара; 2 - изотерма; 3 - адиабата; 4 - изохора.

ГИПЕРГЕНЕЗ         
СОВОКУПНОСТЬ ПРОЦЕССОВ ХИМИЧЕСКИХ И ФИЗИЧЕСКИХ ПРЕОБРАЗОВАНИЯ МИНЕРАЛОВ И ГОРНЫХ ПОРОД В ВЕРХНЕЙ ЧАСТИ ЗЕМНОЙ КОРЫ И НА ЕЁ ПОВЕРХНОСТИ
Гипергенные процессы
(от гипер ... и ...генез), совокупность процессов химического и физического преобразования минеральных веществ в верхних частях земной коры и на ее поверхности (при низких температурах) под действием атмосферы, гидросферы и живых организмов.
Гипергенез         
СОВОКУПНОСТЬ ПРОЦЕССОВ ХИМИЧЕСКИХ И ФИЗИЧЕСКИХ ПРЕОБРАЗОВАНИЯ МИНЕРАЛОВ И ГОРНЫХ ПОРОД В ВЕРХНЕЙ ЧАСТИ ЗЕМНОЙ КОРЫ И НА ЕЁ ПОВЕРХНОСТИ
Гипергенные процессы
(îò Ãèïåð... è ...ãåíåç (Ñì. ...генез))

совокупность гипергенных процессов (См. Гипергенные процессы).

Википедия

Тепловой процесс

Тепловой процесс (термодинамический процесс) — изменение макроскопического состояния термодинамической системы. Если разница между начальным и конечным состояниями системы бесконечно мала, то такой процесс называют элементарным (инфинитезимальным).

Система, в которой идёт тепловой процесс, называется рабочим телом.

Тепловые процессы можно разделить на равновесные и неравновесные. Равновесным называется процесс, при котором все состояния, через которые проходит система, являются равновесными состояниями. Такой процесс приближённо реализуется в тех случаях, когда изменения происходят достаточно медленно, т. е. процесс является квазистатическим.

Тепловые процессы можно разделить на обратимые и необратимые. Обратимым называется процесс, который можно провести в противоположном направлении через все те же самые промежуточные состояния.

Процессы принято классифицировать по тем термодинамическим величинам, которые остаются неизменными в ходе процесса. Можно выделить несколько простых, но широко распространённых на практике, тепловых процессов:

  • Адиабатный процесс ( δ Q = 0 {\displaystyle \delta Q=0} )— без теплообмена с окружающей средой;
  • Изохорный процесс ( V = c o n s t {\displaystyle V=const} ) — происходящий при постоянном объёме;
  • Изобарный процесс ( P = c o n s t {\displaystyle P=const} ) — происходящий при постоянном давлении ;
  • Изотермический процесс ( T = c o n s t {\displaystyle T=const} ) — происходящий при постоянной температуре;
  • Изоэнтропийный процесс ( S = c o n s t {\displaystyle S=const} )— происходящий при постоянной энтропии;
  • Изоэнтальпийный процесс ( H = c o n s t {\displaystyle H=const} )— происходящий при постоянной энтальпии;
  • Политропный процесс ( C = c o n s t {\displaystyle C=const} )— происходящий при постоянной теплоёмкости.

Иногда в течение всего процесса неизменными оказываются не одна, а несколько термодинамических величин. Так, например, испарение и конденсация в системе жидкость — пар, когда одновременно постоянны и давление и температура, есть процессы изобарно-изотермические.

В технике важны круговые процессы (циклы), то есть повторяющиеся процессы, например, цикл Карно, цикл Ренкина.

Теория тепловых процессов применяется для проектирования двигателей, холодильных установок, в химической промышленности, в метеорологии.

Что такое Электр<font color="red">о</font>дные проц<font color="red">е</font>ссы - определение