Эллиптические координаты - определение. Что такое Эллиптические координаты
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Эллиптические координаты - определение

Эллиптические координаты
  • Эллиптическая система координат
Найдено результатов: 111
Эллиптические координаты         

координаты, связанные с семейством софокусных эллипсов и гипербол (см. Софокусные кривые). Э. к. точки М и её декартовы координаты х, у связаны соотношениями х = с chu cos v, у = с shu sin v.

Эллиптическая система координат         
Эллиптические координаты — двумерная ортогональная система координат, в которой координатными линиями являются конфокальные эллипсы и гиперболы. За два фокуса F_1 и F_2 обычно берутся точки -c и +c на оси X декартовой системы координат.
Эллиптический интеграл         
Эллипти́ческий интегра́л — некоторая функция f над полем действительных или комплексных чисел, которая может быть формально представлена в следующем виде:
Эллиптические интегралы         

интегралы вида

,

где R (x, у) - рациональная функция х и , а Р (х) - многочлен 3-й или 4-й степени без кратных корней.

Под Э. и. первого рода понимают интеграл

(1)

под Э. и. второго рода - интеграл

где k - модуль Э. и., 0 < k < 1 (х = sin φ, t = sin α. Интегралы в левых частях равенств (1) и (2) называются Э. и. в нормальной форме Якоби, интегралы в правых частях - Э. и. в нормальной форме Лежандра. При х = 1 или φ = π/2 Э. и называются полными и обозначаются, соответственно, через

и

Своё назв. Э. и. получили в связи с задачей вычисления длины дуги эллипса и = a sin α, v = b cos α(a < b). Длина дуги эллипса выражается формулой

где - эксцентриситет эллипса. Длина дуги четверти эллипса равна E (k). Функции, обратные Э. и., называются эллиптическими функциями (См. Эллиптические функции).

Эллиптическое уравнение         
  • уравнения Лапласа]]
Эллиптические уравнения — класс дифференциальных уравнений в частных производных, описывающих стационарные процессы.
Сферические координаты         
НАБОР ИЗ 3 ЧИСЕЛ, ОПРЕДЕЛЯЮЩИХ ПОЛОЖЕНИЕ ТОЧКИ НА НЕКОЙ СФЕРЕ
Сферические координаты

точки М, три числа r, θ, φ, которые определяются следующим образом. Через фиксированную точку О (рис.) проводятся три взаимно оси Ox, Оу, Oz. Число r равно расстоянию от точки О до точки М, θ представляет собой угол между вектором и положительным направлением оси Oz, φ - угол, на который надо повернуть против часовой стрелки положительную полуось Ox до совпадения с вектором (N - проекция точки М на плоскость хОу). С. к. точки М зависят, таким образом, от выбора точки О и трёх осей Ox, Оу, Oz. Связь С. к. с прямоугольными декартовыми координатами (См. Координаты) устанавливается следующими формулами:

, , .

С. к. имеют большое применение в математике и её приложениях к физике и технике.

Рис. к ст. Сферические координаты.

ЭЛЛИПТИЧЕСКИЕ ФУНКЦИИ         
функции, связанные с интегралами, содержащими квадратные корни из многочленов 3-й или 4-й степеней (появляются, напр., при вычислении длины дуги эллипса).
Эллиптические функции         

функции, связанные с обращением эллиптических интегралов (См. Эллиптические интегралы). Э. ф. применяются во многих разделах математики и механики как при теоретических исследованиях, так и для численных расчётов.

Подобно тому как тригонометрическая функция u = sinx является обратной по отношению к интегралу

так обращение нормальных эллиптических интегралов 1-го рода

где z = sin φω, k - модуль эллиптического интеграла, порождает функции: φ = am z - амплитуда z (эта функция не является Э. ф.) и ω = sn z = sin (am z) - синус амплитуды. Функции cn - косинус амплитуды и dn z - дельта амплитуды определяются формулами

Функции sn z, cn z, dn z называют Э. ф. Якоби. Они связаны соотношением

sn2z + cn2z = k2sn2z + dn2z = 1.

На рис. представлен вид графиков Э. ф. Якоби. Они связаны соотношением

sn2z + cn2z = k2sn2z + dn2z = 1

На рис. представлен вид графиков Э. ф. Якоби для действительного x и 0 < k < 1; а

- полный нормальный эллиптический интеграл 1-го рода и 4K - основной период Э. ф. sn z. В отличие от однопериодической функции sin х, функция sn z - двоякопериодическая. Её второй основной период равен 2iK, где

и - дополнительный модуль. Периоды, нули и полюсы Э. ф. Якоби приведены в таблице, где m и n - любые целые числа.

------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Функции | Периоды | Нули | Полюсы |

|----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| sn z | 4Km + 2iK'n | 2mK + 2iK'n | |

|-----------------------------------------------------------------------------------------------------------------------| }2mK + (2n + 1) iK' |

| cn z | 4K + (2K + 2iK') n | (2m + 1) K + 2iK'n | |

|-----------------------------------------------------------------------------------------------------------------------| |

| dn z | 2Km + 4iK'n | (2m + 1) K + (2n + 1) iK | |

------------------------------------------------------------------------------------------------------------------------------------------------------------------

Э. ф. Вейерштрасса ℙ(х) может быть определена как обратная нормальному эллиптическому интегралу Вейерштрасса 1-го рода

где параметры g2 и g2 - называются инвариантами ℙ(x). При этом предполагается, что нули e1, e2 и e3 многочлена 4t3 - g2t - g3 различны между собой (в противном случае интеграл (*) выражался бы через элементарные функции). Э. ф. Вейерштрасса ℙ(х) связана с Э. ф. Якоби следующими соотношениями:

,

,

.

Любая мероморфная двоякопериодическая функция f (z) с периодами ω1 и ω2, отношение которых мнимо, т. е. f (z + mω1 + пω2) = f (z) при m, n = 0, ±1, ±2,... и , является Э. ф. Для построения Э. ф., а также численных расчётов применяют Сигма-функции и Тэта-функции.

Изучению Э. ф. предшествовало накопление знаний об эллиптических интегралах, систематическое изложение теории которых дал А. Лежандр. Основоположниками теории Э. ф. являются Н. Абель (1827) и К. Якоби (1829). Последний дал развёрнутое изложение теории Э. ф., названное его именем. В 1847 Ж. Лиувилль опубликовал изложение основ общей теории Э. ф., рассматриваемых как мероморфные двоякопериодические функции. Представление Э. ф. через ℙ-функцию, а также ζ-, σ-функции дано К. Вейерштрассом в 40-х гг. 19 в. (две последние не являются Э. ф.).

Лит.: Маркушевич А. И., Теория аналитических функций, 2 изд., т. 2, М., 1968; Гурвиц А., Курант Р., Теория функций, пер. с нем., М., 1968; Уиттекер Э, Т., Ватсон Дж. Н., Курс современного анализа, пер. с англ., 2 изд., ч. 2, М., 1963; Бейтмен Г., Эрдейи А., Высшие трансцендентные функции. Эллиптические и автоморфные функции. Функции Ламе и Матье, пер. с англ., М., 1967.

Рис. к ст. Эллиптические функции.

СФЕРИЧЕСКИЕ КООРДИНАТЫ         
НАБОР ИЗ 3 ЧИСЕЛ, ОПРЕДЕЛЯЮЩИХ ПОЛОЖЕНИЕ ТОЧКИ НА НЕКОЙ СФЕРЕ
Сферические координаты
точки M , три числа r, ?, ?, связанные с декартовыми координатами x, y, z этой точки формулами: x = r sin? cos?, y = r sin? sin?, z = r cos?. Сферические координаты имеют большое применение в математике и ее приложениях.
Сферическая система координат         
НАБОР ИЗ 3 ЧИСЕЛ, ОПРЕДЕЛЯЮЩИХ ПОЛОЖЕНИЕ ТОЧКИ НА НЕКОЙ СФЕРЕ
Сферические координаты
Сферическая система координат — трёхмерная система координат, в которой каждая точка пространства определяется тремя числами (r,\;\theta,\;\varphi), где r — расстояние до начала координат (радиальное расстояние), а \theta и \varphi — зенитный и азимутальный углы соответственно.

Википедия

Эллиптическая система координат

Эллиптические координаты — двумерная ортогональная система координат, в которой координатными линиями являются конфокальные эллипсы и гиперболы. За два фокуса F 1 {\displaystyle F_{1}} и F 2 {\displaystyle F_{2}} обычно берутся точки c {\displaystyle -c} и + c {\displaystyle +c} на оси X {\displaystyle X} декартовой системы координат.

Что такое Эллипт<font color="red">и</font>ческие координ<font color="red">а</font>ты - определение