ЯДЕРНЫЙ СИНТЕЗ: РЕАКЦИИ ТЕРМОЯДЕРНОГО СИНТЕЗА - определение. Что такое ЯДЕРНЫЙ СИНТЕЗ: РЕАКЦИИ ТЕРМОЯДЕРНОГО СИНТЕЗА
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое ЯДЕРНЫЙ СИНТЕЗ: РЕАКЦИИ ТЕРМОЯДЕРНОГО СИНТЕЗА - определение

РАЗНОВИДНОСТЬ ЯДЕРНОЙ РЕАКЦИИ, ПРИ КОТОРОЙ ЛЁГКИЕ АТОМНЫЕ ЯДРА ОБЪЕДИНЯЮТСЯ В БОЛЕЕ ТЯЖЁЛЫЕ ЗА СЧЕТ КИНЕТИЧЕСКОЙ ЭНЕРГИИ ИХ ТЕПЛОВОГО ДВИ
Термоядерный синтез; Термоядерные реакции; Ядерный синтез; Термояд; Реакция синтеза
  • Анимированная]] схема реакции дейтерий — тритий
  • Схема реакции дейтерий — тритий
  • Ivy Mike]]
Найдено результатов: 266
ЯДЕРНЫЙ СИНТЕЗ: РЕАКЦИИ ТЕРМОЯДЕРНОГО СИНТЕЗА      
К статье ЯДЕРНЫЙ СИНТЕЗ
d + d . 3He + n + 3,25 МэВ*)
d + d . t + p + 4,0 МэВ*)
t + d . 4He + n + 17,6 МэВ**)
3He + d . 4He + p + 18,3 МэВ**)
6Li + d . 24He + 22,4 МэВ
7Li + p . 24He + . + 17,3 МэВ
*) Эти две реакции примерно равновероятны.
**) Изотопы 3H и 3He практически отсутствуют в природе, их можно получить искусственно.
Как показал Г.Гамов, вероятность реакции между двумя сближающимися легкими ядрами пропорциональна , где e - основание натуральных логарифмов, Z1 и Z2 - числа протонов во взаимодействующих ядрах, W - энергия их относительного сближения, а K - постоянный множитель. Энергия, необходимая для осуществления реакции, зависит от числа протонов в каждом ядре. Если оно больше трех, то эта энергия слишком велика и реакция практически неосуществима. Таким образом, с возрастанием Z1 и Z2 вероятность реакции уменьшается.
Вероятность того, что два ядра вступят во взаимодействие, характеризуется "сечением реакции", измеряемом в барнах (1 б = 10-24 см2 ). Сечение реакции - это площадь эффективного поперечного сечения ядра, в которое должно "попасть" другое ядро, чтобы произошло их взаимодействие. Сечение реакции дейтерия с тритием достигает максимальной величины (?5 б), когда взаимодействующие частицы имеют энергию относительного сближения порядка 200 кэВ. При энергии 20 кэВ сечение становится меньше 0,1 б.
Из миллиона попадающих на мишень ускоренных частиц не более одной вступает в ядерное взаимодействие. Остальные рассеивают свою энергию на электронах атомов мишени и замедляются до скоростей, при которых реакция становится невозможной. Следовательно, способ бомбардировки твердой мишени ускоренными ядрами (как это было в эксперименте Кокрофта - Уолтона) для УТС непригоден, так как получаемая при этом энергия намного меньше затраченной.
Термоядерные топлива. Реакции с участием p, играющие основную роль в процессах ядерного синтеза на Солнце и других гомогенных звездах, в земных условиях не представляют практического интереса, поскольку имеют слишком малое сечение. Для осуществления термоядерного синтеза на земле более подходящим видом топлива, как упоминалось выше, является дейтерий.
Но наиболее вероятная реакция реализуется в равнокомпонентной смеси дейтерия и трития (DT-смесь). К сожалению, тритий радиоактивен и, ввиду короткого периода полураспада (T1/2 . 12,3 года) в природе практически не встречается. Его получают искусственным путем в реакторах деления, а также как побочный продукт в реакциях с дейтерием. Однако отсутствие в природе трития не является препятствием для использования DT - реакции синтеза, т.к. тритий можно производить, облучая изотоп 6Li образующимися при синтезе нейтронами: n + 6Li . 4He + t.
Если окружить термоядерную камеру слоем 6Li (в природном литии его содержится 7%), то можно осуществить полное воспроизводство расходуемого трития. И хотя на практике часть нейтронов неизбежно теряется, их потерю легко восполнить, вводя в оболочку такой элемент, как бериллий, ядро которого, при попадании в него одного быстрого нейтрона, испускает два.
Принцип действия термоядерного реактора. Реакция слияния легких ядер, цель которой - получение полезной энергии, называется управляемым термоядерным синтезом. Осуществляется он при температурах порядка сотен миллионов кельвинов. Такой процесс реализован пока только в лабораториях.
Временне и температурные условия. Получение полезной термоядерной энергии возможно лишь при выполнении двух условий. Во-первых, предназначенная для синтеза смесь должна быть нагрета до температуры, при которой кинетическая энергия ядер обеспечивает высокую вероятность их слияния при столкновении. Во-вторых, реагирующая смесь должна быть очень хорошо термоизолирована (т.е. высокая температура должна поддерживаться достаточно долго, чтобы произошло необходимое число реакций и выделившаяся за счет этого энергия превышала энергию, затраченную на нагрев топлива).
В количественной форме это условие выражается следующим образом. Чтобы нагреть термоядерную смесь, одному кубическому сантиметру ее объема надо сообщить энергию P1 = knT, где k - численный коэффициент, n - плотность смеси (количество ядер в 1 см3), T - требуемая температура. Для поддержания реакции сообщенная термоядерной смеси энергия должна сохраняться в течение времени ?. Чтобы реактор был энергетически выгоден, нужно, чтобы за это время в нем выделилось термоядерной энергии больше, чем было потрачено на нагрев. Выделившаяся энергия (также на 1 см3) выражается следующим образом:
где f(T) - коэффициент, зависящий от температуры смеси и ее состава, R - энергия, выделяющаяся в одном элементарном акте синтеза. Тогда условие энергетической рентабельности P2 P1 примет вид
или
Последнее неравенство, известное под названием критерия Лоусона, представляет собой количественное выражение требований к совершенству термоизоляции. Правая часть - "число Лоусона" - зависит только от температуры и состава смеси, и чем оно больше, тем жестче требования к термоизоляции, т.е. тем труднее создать реактор. В области приемлемых температур число Лоусона для чистого дейтерия составляет 1016 с/см3, а для равнокомпонентной DT-смеси - 2?1014 с/см3. Таким образом, DT-смесь является более предпочтительным термоядерным топливом.
В соответствии с критерием Лоусона, определяющим энергетически выгодную величину произведения плотности на время удержания, в термоядерном реакторе следует использовать по возможности большие n либо ?. Поэтому исследования УТС разошлись по двум разным направлениям: в первом исследователи пытались с помощью магнитного поля в течение достаточно длительного времени удерживать относительно разреженную плазму; во втором - с помощью лазеров на короткое время создать плазму с очень высокой плотностью. Первому подходу было посвящено гораздо больше работ, чем второму.
Магнитное удержание плазмы. Во время реакции синтеза плотность горячего реагента должна оставаться на уровне, который обеспечивал бы достаточно высокий выход полезной энергии на единицу объема при давлении, которое в состоянии выдержать камера с плазмой. Например, для смеси дейтерий - тритий при температуре 108 К выход определяется выражением
Если принять P равным 100 Вт/см3 (что примерно соответствует энергии, выделяемой топливными элементами в ядерных реакторах деления), то плотность n должна составлять ок. 1015 ядер/см3, а соответствующее давление nT - примерно 3 МПа. Время удержания при этом, согласно критерию Лоусона, должно быть не менее 0,1 с. Для дейтерий-дейтериевой плазмы при температуре 109 К
В этом случае при P = 100 Вт/см3, n . 3?1015 ядер/см3 и давлении примерно 100 МПа требуемое время удержания составит более 1 с. Заметим, что указанные плотности составляют лишь 0,0001 от плотности атмосферного воздуха, так что камера реактора должна откачиваться до высокого вакуума.
Приведенные выше оценки времени удержания, температуры и плотности являются типичными минимальными параметрами, необходимыми для работы термоядерного реактора, причем легче они достигаются в случае дейтерий-тритиевой смеси. Что касается термоядерных реакций, протекающих при взрыве водородной бомбы и в недрах звезд, то следует иметь в виду, что в силу совершенно иных условий в первом случае они протекают очень быстро, а во втором - крайне медленно по сравнению с процессами в термоядерном реакторе.
Плазма. При сильном нагреве газа его атомы частично или полностью теряют электроны, в результате чего образуются положительно заряженные частицы, называемые ионами, и свободные электроны. При температурах более миллиона градусов газ, состоящий из легких элементов, полностью ионизуется, т.е. каждый его атом утрачивает все свои электроны. Газ в ионизованном состоянии называется плазмой (термин введен И.Ленгмюром). Свойства плазмы существенно отличаются от свойств нейтрального газа. Поскольку в плазме присутствуют свободные электроны, плазма очень хорошо проводит электрический ток, причем ее проводимость пропорциональна T3/2. Плазму можно нагревать, пропуская через нее электрический ток. Проводимость водородной плазмы при 108 К такая же, как у меди при комнатной температуре. Очень велика и теплопроводность плазмы.
Чтобы удержать плазму, например, при температуре 108 К, ее нужно надежно термоизолировать. В принципе изолировать плазму от стенок камеры можно, поместив ее в сильное магнитное поле. Это обеспечивается силами, которые возникают при взаимодействии токов с магнитным полем в плазме.
Под действием магнитного поля ионы и электроны движутся по спиралям вдоль его силовых линий. Переход с одной силовой линии на другую возможен при столкновениях частиц и при наложении поперечного электрического поля. В отсутствие электрических полей высокотемпературная разреженная плазма, в которой столкновения происходят редко, будет лишь медленно диффундировать поперек магнитных силовых линий. Если силовые линии магнитного поля замкнуть, придав им форму петли, то частицы плазмы будут двигаться вдоль этих линий, удерживаясь в области петли. Кроме такой замкнутой магнитной конфигурации для удержания плазмы были предложены и открытые системы (с силовыми линиями поля, выходящими из торцов камеры наружу), в которых частицы остаются внутри камеры благодаря ограничивающим движение частиц магнитным "пробкам". Магнитные пробки создаются у торцов камеры, где в результате постепенного увеличения напряженности поля образуется сужающийся пучок силовых линий.
На практике осуществить магнитное удержание плазмы достаточно большой плотности оказалось далеко не просто: в ней часто возникают магнитогидродинамические и кинетические неустойчивости.
Магнитогидродинамические неустойчивости связаны с изгибами и изломами магнитных силовых линий. В этом случае плазма может начать перемещаться поперек магнитного поля в виде сгустков, за несколько миллионных долей секунды уйдет из зоны удержания и отдаст тепло стенкам камеры. Такие неустойчивости можно подавить, придав магнитному полю определенную конфигурацию.
Кинетические неустойчивости очень многообразны и изучены они менее детально. Среди них есть такие, которые срывают упорядоченные процессы, как, например, протекание через плазму постоянного электрического тока или потока частиц. Другие кинетические неустойчивости вызывают более высокую скорость поперечной диффузии плазмы в магнитном поле, чем предсказываемая теорией столкновений для спокойной плазмы.
Системы с замкнутой магнитной конфигурацией. Если к ионизованному проводящему газу приложить сильное электрическое поле, то в нем возникнет разрядный ток, одновременно с которым появится окружающее его магнитное поле. Взаимодействие магнитного поля с током приведет к появлению действующих на заряженные частицы газа сжимающих сил. Если ток протекает вдоль оси проводящего плазменного шнура, то возникающие радиальные силы подобно резиновым жгутам сжимают шнур, отодвигая границу плазмы от стенок содержащей ее камеры. Это явление, теоретически предсказанное У.Беннеттом в 1934 и впервые экспериментально продемонстрированное А.Уэром в 1951, названо пинч-эффектом. Метод пинча применяется для удержания плазмы; примечательной его особенностью является то, что газ нагревается до высоких температур самим электрическим током (омический нагрев). Принципиальная простота метода обусловила его использование в первых же попытках удержания горячей плазмы, а изучение простого пинч-эффекта, несмотря на то, что впоследствии он был вытеснен более совершенными методами, позволило лучше понять проблемы, с которыми экспериментаторы сталкиваются и сегодня.
Помимо диффузии плазмы в радиальном направлении, наблюдается еще продольный дрейф и выход ее через торцы плазменного шнура. Потери через торцы можно устранить, если придать камере с плазмой форму бублика (тора). В этом случае получается тороидальный пинч.
Для описанного выше простого пинча серьезной проблемой являются присущие ему магнитогидродинамические неустойчивости. Если у плазменного шнура возникает небольшой изгиб, то плотность силовых линий магнитного поля с внутренней стороны изгиба увеличивается (рис. 1). Магнитные силовые линии, которые ведут себя подобно сопротивляющимся сжатию жгутам, начнут быстро "выпучиваться", так что изгиб будет увеличиваться вплоть до разрушения всей структуры плазменного шнура. В результате плазма вступит в контакт со стенками камеры и охладится. Чтобы исключить это губительное явление, до пропускания основного аксиального тока в камере создают продольное магнитное поле, которое вместе с приложенным позднее круговым полем "выпрямляет" зарождающийся изгиб плазменного шнура (рис. 2). Принцип стабилизации плазменного шнура аксиальным полем положен в основу двух перспективных проектов термоядерных реакторов - токамака и пинча с обращенным магнитным полем.
Открытые магнитные конфигурации. В системах открытой конфигурации проблема удержания плазмы в продольном направлении решается путем создания магнитного поля, силовые линии которого вблизи торцов камеры имеют вид сужающегося пучка. Заряженные частицы движутся по винтовым линиям вдоль силовой линии поля и отражаются от областей с более высокой напряженностью (где плотность силовых линий больше). Такие конфигурации (рис. 3) называются ловушками с магнитными пробками, или магнитными зеркалами. Магнитное поле создается двумя параллельными катушками, в которых протекают сильные одинаково направленные токи. В пространстве между катушками силовые линии образуют "бочку", в которой и располагается удерживаемая плазма. Однако экспериментально установлено, что такие системы вряд ли в состоянии удержать плазму той степени плотности, которая необходима для работы реактора. Сейчас на этот метод удержания не возлагается больших надежд. См. также МАГНИТНАЯ ГИДРОДИНАМИКА
.
Инерциальное удержание. Теоретические расчеты показывают, что термоядерный синтез возможен и без применения магнитных ловушек. Для этого осуществляется быстрое сжатие специально приготовленной мишени (шарика из дейтерия радиусом ок. 1 мм) до столь высоких плотностей, что термоядерная реакция успевает завершиться прежде, чем произойдет испарение топливной мишени. Сжатие и нагрев до термоядерных температур можно производить сверхмощными лазерными импульсами, со всех сторон равномерно и одновременно облучающими топливный шарик (рис. 4). При мгновенном испарении его поверхностных слоев вылетающие частицы приобретают очень высокие скорости, и шарик оказывается под действием больших сжимающих сил. Они аналогичны движущим ракету реактивным силам, с той лишь разницей, что здесь эти силы направлены внутрь, к центру мишени. Этим методом можно создать давления порядка 1011 МПа и плотности, в 10 000 раз превышающие плотность воды. При такой плотности почти вся термоядерная энергия высвободится в виде небольшого взрыва за время ?10-12 с. Происходящие микровзрывы, каждый из которых эквивалентен 1-2 кг тротила, не вызовут повреждения реактора, а осуществление последовательности таких микровзрывов через короткие промежутки времени позволило бы реализовать практически непрерывное получение полезной энергии. Для инерциального удержания очень важно устройство топливной мишени. Мишень в виде концентрических сфер из тяжелого и легкого материалов позволит добиться максимально эффективного испарения частиц и, следовательно, наибольшего сжатия.
Расчеты показывают, что при энергии лазерного излучения порядка мегаджоуля (106 Дж) и кпд лазера не менее 10% производимая термоядерная энергия должна превышать энергию, израсходованную на накачку лазера. Термоядерные лазерные установки имеются в исследовательских лабораториях России, США, Западной Европы и Японии. В настоящее время изучается возможность использования вместо лазерного луча пучка тяжелых ионов или сочетания такого пучка со световым лучом. Благодаря современной технике такой способ инициирования реакции имеет преимущество перед лазерным, поскольку позволяет получить больше полезной энергии. Недостаток заключается в трудности фокусировки пучка на мишени.
Химический синтез         
Синтез химический; Синтез (химия); Синтез, в химии; Синтез в химии
Хими́ческий си́нтез — в узком смысле это процесс создания сложных молекул из более простых, или менее доступных молекул из более доступных. В широком смысле — это искусственное выполнение химических и физических реакций для получения одного или нескольких продуктов.
Синтез химический         
Синтез химический; Синтез (химия); Синтез, в химии; Синтез в химии

целенаправленное получение сложных веществ из более простых, основывающееся на знании молекулярного строения и реакционной способности последних. Обычно под синтезом подразумевается последовательность нескольких химических процессов (стадий).

В раннем периоде развития химии С. х. осуществлялся главным образом для неорганических соединений и носил случайный характер. Синтетическое получение сложных веществ стало возможным лишь после того, как были накоплены сведения об их составе и свойствах с развитием методов органического и физико-химического анализа. Принципиальное значение имели первые синтезы органических веществ - щавелевой кислоты и мочевины, осуществленные Ф. Вёлером в 1824 и 1828 (см. Органическая химия). Попытки синтеза аналогов сложных природных соединений, предпринятые в середине 19 в., когда стройной теории строения органических соединений не существовало, показали лишь принципиальную возможность синтеза таких веществ, как Жиры (П. Э. М. Бертло) и Углеводы (А. М. Бутлеров). Позднее уже на теоретической основе (см. Химического строения теория) были синтезированы индиго, камфора и другие сравнительно простые соединения, а также более сложные - некоторые углеводы, аминокислоты и пептиды. Начиная с 20-х гг. 20 в. плодотворное влияние на методологию С. х. оказали работы Р. Робинсона по получению ряда сложных молекул путями, имитирующими пути их образования в природе. С конца 30-х гг. наблюдается бурное развитие С. х. вначале в области стероидов, алкалоидов и витаминов, а затем в области изопреноидов, антибиотиков, полисахаридов, пептидов и нуклеиновых кислот. В 40-60-х гг. существенный вклад в развитие тонкого органического синтеза внёс Р. Б. Вудворд, осуществивший синтез ряда важных природных соединений (хинин, кортизон, хлорофилл, тетрациклин, витамин В 12 и др.). Примером больших успехов С. х. может служить также первый полный синтез гена аланиновой транспортной рибонуклеиновой кислоты (из дрожжей), осуществленный в 1970 Х. Г. Кораной (См. Корана) с сотрудниками.

Развитие органического синтеза происходит по следующим принципиальным направлениям производство важнейших промышленных продуктов (полимеров, синтетического топлива, красителей и пр.); получение различных физиологически активных веществ для медицины, сельского хозяйства, пищевой промышленности, парфюмерии; подтверждение строения сложных природных соединений и получение молекул с "необычным" строением для проверки и совершенствования теории органической химии; расширение арсенала реакций и методов С. х., включая использование катализаторов (См. Катализаторы), высоких энергий (см. Плазмохимия, Радиационная химия), а также более широкое использование (в строго контролируемых условиях) микроорганизмов и очищенных ферментов. В 70-е гг. появились работы по применению ЭВМ для целей оптимизации многостадийного С. х.

Разработка и совершенствование синтетических методов позволили получать многие важные химические продукты в промышленных масштабах. В неорганической химии (См. Неорганическая химия) - это синтезы азотной кислоты (См. Азотная кислота), Аммиака, серной кислоты (См. Серная кислота), соды (См. Сода), различных комплексных и других соединений. Налажено многотоннажное производство органических веществ, используемых в различных отраслях химической промышленности (см. Основной органический синтез), а также продуктов тонкого органического синтеза (гормонов, витаминов).

Лит.: Реутов О. А., Органический синтез, 3 изд., М., 1954; Перспективы развития органической химии, пер. с англ. и нем., под ред. А. Тодда, М., 1959; Крам Д., Хеммонд Дж., Органическая химия, пер. с англ., М., 1964. См. также лит. при статьях, ссылки на которые даны в тексте.

С. А. Погодин, Э. П. Серебряков.

Холодный ядерный синтез         
  • Схема [[калориметр]]а открытого типа, используемого в Новом институте водородной энергии в Японии
Холодный термояд; Холодный термоядерный синтез; Холодный синтез; LENR; ХТЯС; ХЯС
Холо́дный я́дерный си́нтез (ХЯС; ) — предполагаемая возможность осуществления ядерной реакции синтеза в химических (атомно-молекулярных) системах без значительного нагрева рабочего вещества. Известные ядерные реакции синтеза — термоядерные реакции — проходят в плазме при температурах в миллионы кельвинов.
СИНТЕЗ ХИМИЧЕСКИЙ         
Синтез химический; Синтез (химия); Синтез, в химии; Синтез в химии
целенаправленное получение различных продуктов с помощью химических реакций. Иногда под химическим синтезом понимают получение сложных веществ из более простых.
ТЕРМОЯДЕРНЫЕ РЕАКЦИИ         
реакции слияния легких ядер в более тяжелые, происходящие при высоких температурах. Сопровождаются выделением энергии; основной источник энергии Солнца и др. звезд (см. также Управляемый термоядерный синтез).
ЯДЕРНЫЙ СИНТЕЗ         
термоядерный синтез, реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. Ядерный синтез - это реакция, обратная делению атомов: в последней энергия выделяется за счет расщепления тяжелых ядер на более легкие. См. также ЯДЕР ДЕЛЕНИЕ; АТОМНАЯ ЭНЕРГЕТИКА.
Согласно современным астрофизическим представлениям, основным источником энергии Солнца и других звезд является происходящий в их недрах термоядерный синтез. В земных условиях он осуществляется при взрыве водородной бомбы. Термоядерный синтез сопровождается колоссальным энерговыделением на единицу массы реагирующих веществ (примерно в 10 миллионов раз большим, чем в химических реакциях). Поэтому представляет большой интерес овладеть этим процессом и на его основе создать дешевый и экологически чистый источник энергии. Однако несмотря на то, что исследованиями управляемого термоядерного синтеза (УТС) заняты большие научно-технические коллективы во многих развитых странах, предстоит решить еще немало сложных проблем, прежде чем промышленное производство термоядерной энергии станет реальностью.
Современные атомные станции, использующие процесс деления, лишь отчасти удовлетворяют мировые потребности в электроэнергии. Топливом для них служат естественные радиоактивные элементы уран и торий, распространенность и запасы которых в природе весьма ограничены; поэтому для многих стран возникает проблема их импорта. Главным компонентом термоядерного топлива является изотоп водорода дейтерий, который содержится в морской воде. Запасы его общедоступны и очень велики (мировой океан покрывает ?71% площади поверхности Земли, а на долю дейтерия приходится ок. 0,016% общего числа атомов водорода, входящих в состав воды). Помимо доступности топлива, термоядерные источники энергии имеют следующие важные преимущества перед атомными станциями: 1) реактор УТС содержит гораздо меньше радиоактивных материалов, чем атомный реактор деления, и поэтому последствия случайного выброса радиоактивных продуктов менее опасны; 2) при термоядерных реакциях образуется меньше долгоживущих радиоактивных отходов; 3) УТС допускает прямое получение электроэнергии.
См. также:
Термоядерные реакции         

ядерные реакции между лёгкими атомными ядрами, протекающие при очень высоких температурах (порядка 107 К и выше). Высокие температуры, то есть достаточно большие относительные энергии сталкивающихся ядер, необходимы для преодоления электростатического барьера, обусловленного взаимным отталкиванием ядер (как одноимённо заряженных частиц). Без этого невозможно сближение ядер на расстояние порядка радиуса действия ядерных сил, а следовательно, и "перестройка" ядер, происходящая при Т. р. Поэтому Т. р. в природных условиях протекают лишь в недрах звёзд, а для их осуществления на Земле необходимо сильно разогреть вещество ядерным взрывом, мощным газовым разрядом, гигантским импульсом лазерного излучения или бомбардировкой интенсивным пучком частиц.

Т. р., как правило, представляют собой процессы образования сильно связанных ядер из более рыхлых и потому сопровождаются выделением энергии (точнее, выделением в продуктах реакции избыточной кинетической энергии, равной увеличению энергии связи). При этом сам механизм этого "экзоэнергетического" сдвига к средней части периодической системы элементов Менделеева здесь противоположен тому, который имеет место при делении тяжёлых ядер: почти все практически интересные Т. р. - это реакции слияния (синтеза) лёгких ядер в более тяжёлые. Имеются, однако, исключения: благодаря особой прочности ядра 4He (α-частица) возможны экзоэнергетические реакции деления лёгких ядер (одна из них, "чистая" реакция 11B + р → 34Не + 8,6 Мэв, привлекла к себе интерес в самое последнее время).

Большое энерговыделение в ряде Т. р. обусловливает важность их изучения для астрофизики, а также для прикладной ядерной физики и ядерной энергетики. Кроме того, чрезвычайно интересна роль Т. р. в дозвёздных и звёздных процессах синтеза атомных ядер химических элементов (нуклеогенеза).

Скорости Т. р. В табл. 1 для ряда Т. р. приведены значения энерговыделения, основной величины, характеризующей вероятность Т. р. - её максимального эффективного поперечного сечения (См. Эффективное поперечное сечение) (σмакс, и соответствующей энергии налетающей (в формуле реакции - первой слева) частицы.

Главная причина очень большого разброса сечений Т. р. - резкое различие вероятностей собственно ядерных ("послебарьерных") превращений. Так, для большинства реакций, сопровождающихся образованием наиболее сильно связанного ядра 4He, сечение велико, тогда как для реакций, обусловленных слабым взаимодействием (См. Слабые взаимодействия) (например, р + р → D + е+ + ν), оно весьма мало.

Т. р. происходят в результате парных столкновений между ядрами, поэтому число их в единице объёма в единицу времени равно n1n2 <vσ(v) >, где n1, n2 - концентрации ядер 1-го и 2-го сортов (если ядра одного сорта, то n1n2 ñëåäóåò çàìåíèòü íà 1/2n2), v - относительная скорость сталкивающихся ядер, угловые скобки означают усреднение по скоростям ядер v [распределение которых в дальнейшем принимается максвелловским (см. Максвелла распределение)].

Температурная зависимость скорости Т. р. определяется множителем < vσ(v) >. В практически важном случае "не очень высоких" температур T < (107÷108) К она может быть приближённо выражена в виде, одинаковом для всех Т. р. В этом случае относительные энергии Е сталкивающихся ядер, как правило, значительно ниже высоты кулоновского барьера (последняя даже для комбинации ядер с наименьшим зарядом z = 1 составляет Термоядерные реакции 200 Кэв, что соответствует, по соотношению E = kT, T Термоядерные реакции 2․109 K) и, следовательно, вид σ(v) определяется в основном вероятностью "туннельного" прохождения сквозь барьер (см. Туннельный эффект), а не собственно ядерным взаимодействием, в ряде случаев обусловливающим "резонансный" характер зависимости σ(v) (именно такая зависимость проявляется в наибольших из значений σмакс в таблице 1). Результат имеет вид

< vσ(v) > = const․Т-2/3ехр}

,

где const - постоянная, характерная для данной реакции, Z1, Z2 - заряды сталкивающихся ядер, - их приведённая масса, е - заряд электрона, η - Планка постоянная, k - Больцмана постоянная.

Таблица 1

----------------------------------------------------------------------------------------------------------------------------------------------------------

| | Реакция | Энерговыделение, | σмакс, Барн | Энергия налетающей |

| | | Мэв | области энергий ≤1 | частицы, |

| | | | Мэв) | соответствующая σмакс, |

| | | | | Мэв |

|--------------------------------------------------------------------------------------------------------------------------------------------------------|

| 1 | p + p D + e+ + v | 2,2 | 10-23 | - |

| 2 | p + D 3He + g | 5,5 | 10-6 | - |

| 3 | p + T 4He + g | 19,7 | 10-6 | - |

| 4 | D + D T + P | 4,0 | 0,16 (при 2 Мэв) | 2,0 |

| 5 | D + D 3He + n | 3,3 | 0,09 | 1,0 |

| 6 | D + D 4He + g | 24,0 | - | - |

| 7 | D + T 4He + n | 17,6 | 5,0 | 0,13 |

| 8 | T + D 4He + n | 17,6 | 5,0 | 0,195 |

| 9 | T + T 4He + 2n | 11,3 | 0,10 | 1,0 |

| 10 | D + 3He 4He + p | 18,4 | 0,71 | 0,47 |

| 11 | 3Не + 3Не 4Не+2р | 12,8 | - | - |

| 12 | n + 6Li 4He + T | 4,8 | 2,6 | 0,26 |

| 13 | p + 6Li 4He + 3He | 4,0 | 10-4 | 0,3 |

| 14 | p + 7Li 24He + γ | 17,3 | 6․10-3 | 0,44 |

| 15 | D + 6Li 7Li + p | 5,0 | 0,01 | 1,0 |

| 16 | D + 6Li 24He | 22,4 | 0,026 | 0,60 |

| 17 | D + 7Li 24He + n | 15,0 | 10-3 | 0,2 |

| 18 | p + 9Be 24He + D | 0,56 | 0,46 | 0,33 |

| 19 | p + 9Be 6Li + 4He | 2,1 | 0,35 | 0,33 |

| 20 | p + 11B 34He | 8,6 | 0,6 | 0,675 |

| 21 | p + 15N 12C + 4He | 5,0 | 0,69 (при 1,2 Мэв) | 1,2 |

----------------------------------------------------------------------------------------------------------------------------------------------------------

p - протон, D - дейтрон (ядро дейтерия 2H), Т - тритон (ядро трития 3H), n - нейтрон, е+ - позитрон, v - нейтрино, γ - фотон.

Т. р. во Вселенной играют двоякую роль - как основной источник энергии звёзд и как механизм нуклеогенеза. Для нормальных гомогенных звезд, в том числе Солнца, главным процессом экзоэнергетического ядерного синтеза является сгорание Н в Не, точнее, превращение 4 протонов в ядро 4He и 2 позитрона. Этот результат можно получить двумя путями (Х. Бете и др., 1938-39): 1) в протон - протонной (рр) цепочке, или водородном цикле; 2) в углеродно-азотном (CN), или углеродном, цикле (таблицы 2 и 3).

Первые 3 реакции входят в полный цикл дважды. Времена реакций рассчитаны для условий в центре Солнца: Т = 13 млн К (по другим данным - 16 млн К), плотность Н - 100 г /см3. В скобках указана часть энерговыделения, безвозвратно уходящая с ν.

В CN-цикле ядро 12С играет роль катализатора. Для Солнца и менее ярких звёзд в полном энерговыделении преобладает рр-цикл, а для более ярких звёзд - CN-цикл.

Табл. 2. - Водородный цикл

------------------------------------------------------------------------------------------------------------------------------------------

| Реакция | Энерговыделение, Мэв | Среднее время реакции |

|----------------------------------------------------------------------------------------------------------------------------------------|

| р + р D+e+ + v | 2․0,164 + (2․0,257) | 1,4․1010 лет |

| е+ + е- →2γ | 2․1,02 | - |

| p + D 3He + g | 2․5,49 | 5,7 сек |

| 3Не + 3Не 4Не+2р | 12,85 | 106 лет |

|----------------------------------------------------------------------------------------------------------------------------------------|

| Итого 4p (r) 4He + 2e+ | 26,21 + (0,514) | |

------------------------------------------------------------------------------------------------------------------------------------------

Водородный цикл разветвляется на 3 варианта. При достаточно больших концентрациях 4He и T > (10 ÷ 15) млн К, в полном энерговыделении начинает преобладать др. ветвь рр-цикла, отличающаяся от приведённой в таблице 2 заменой реакции 3He + 3He на цепочку:

3He + 4He → 7Be + γ, 7Be + e- 7Li + γ,

p + 7Li → 24He,

а при ещё более высоких Т - третья ветвь:

3He + 4He → 7Be + γ, р + 7Ве → 8В + γ,

8B → 8Be + e+ + ν, 8Be → 24He.

Для звёзд-гигантов с плотными выгоревшими (по содержанию Н) ядрами существенны гелиевый и неоновый циклы Т. р.; они протекают при значительно более высоких температурах и плотностях, чем рр- и CN-циклы. Основной реакцией гелиевого цикла, идущей, начиная с T ≈ 200 млн К, является так называемый процесс Солпитера: 34He → 12C + γ1 + γ2 + 7,3 Мэв (процесс не строго тройной, а двухступенчатый, идущий через промежуточное ядро 8Be). Далее могут следовать реакции 12C +4Не → 16O + γ, 16O + 4He → 20Ne + γ; в этом состоит один из механизмов нуклеогенеза. Возможность процесса Солпитера, а тем самым и нуклеогенеза большинства элементов (предпосылка возникновения всех форм жизни!) связана с таким случайным обстоятельством, как большая "острота" резонанса в ядерной реакции 34Не → 12С, обеспечиваемая наличием подходящего дискретного уровня энергии у ядра 8Be.

Если продукты реакций гелиевого цикла вступят в контакт с Н, то осуществляется неоновый (Ne-Na) цикл, в котором ядро 20Ne играет роль катализатора для процесса сгорания Н в Не. Последовательность реакций здесь вполне аналогична CN-циклу (табл. 3), только ядра 12C, 13N, 13C, 14N, 15O, 15N заменяются соответственно ядрами20Ne, 21Na, 21Ne, 22Na, 23Na, 23Mg.

Табл. 3. - Углеродный цикл

------------------------------------------------------------------------------------------------------------------------------

| Реакция | Энерговыделение, Мэв | Среднее время реакции |

|----------------------------------------------------------------------------------------------------------------------------|

| р + 12С 13N + γ | 1,95 | 1,3․107 лет |

|----------------------------------------------------------------------------------------------------------------------------|

| 13N 13С + е+ + v | 1,50(0,72) | 7,0 мин |

|----------------------------------------------------------------------------------------------------------------------------|

| р + 13С 14N + γ | 7,54 | 2,7․106 лет |

|----------------------------------------------------------------------------------------------------------------------------|

| р + 14N 15O + γ | 7,35 | 3,3․108 лет |

|----------------------------------------------------------------------------------------------------------------------------|

| 15O 15N + e+ +v | 1,73 + (0,98) | 82 сек |

|----------------------------------------------------------------------------------------------------------------------------|

| р + 15N 12С + 4Не | 4,96 | 1,1․105 лет |

|----------------------------------------------------------------------------------------------------------------------------|

| Итого 4Не + + | 25,03 + (1,70) | |

------------------------------------------------------------------------------------------------------------------------------

Мощность этого цикла как источника энергии невелика. Однако он, по-видимому, имеет большое значение для нуклеогенеза, так как одно из промежуточных ядер цикла (21Ne) может служить источником нейтронов: 21Ne + 4He → 24Mg + n (аналогичную роль может играть и ядро С, участвующее в CN-цикле). Последующий "цепной" захват нейтронов, чередующийся с процессами β--распада, является механизмом синтеза всё более тяжёлых ядер.

Средняя интенсивность энерговыделения ε в типичных звёздных Т. р. по земным масштабам ничтожна. Так, для Солнца (в среднем на 1 г солнечной массы) . Это гораздо меньше, например, скорости энерговыделения в живом организме в процессе обмена веществ. Однако вследствие огромной массы Солнца (2․1033г) полная излучаемая им мощность (4․1026 вт) чрезвычайно велика (она соответствует ежесекундному уменьшению массы Солнца на Термоядерные реакции 4 млн. т) и даже ничтожной её доли достаточно, чтобы оказывать решающее влияние на энергетический баланс земной поверхности, жизни и т. д.

Из-за колоссальных размеров и масс Солнца и звёзд в них идеально решается проблема удержания (в данном случае - гравитационного) и термоизоляции плазмы: Т. р. протекают в горячем ядре звезды, а теплоотдача происходит с удалённой и гораздо более холодной поверхности. Только поэтому звёзды могут эффективно генерировать энергию в таких медленных процессах, как рр- и CN-циклы (табл. 2 и 3). В земных условиях эти процессы практически неосуществимы; например, фундаментальная реакция р + p → D + е+ + ν непосредственно вообще не наблюдалась.

Т. р. в земных условиях. На Земле имеет смысл использовать лишь наиболее эффективные из Т. р., связанные с участием изотопов водорода D и Т. Подобные Т. р. в сравнительно крупных масштабах осуществлены пока только в испытательных взрывах термоядерных, или водородных бомб (см. Ядерное оружие). Энергия, высвобождающаяся при взрыве такой бомбы (1023- 1024эрг), превышает недельную выработку электроэнергии на всём земном шаре и сравнима с энергией землетрясений и ураганов. Вероятная схема реакций в термоядерной бомбе включает Т. р. 12, 7, 4 и 5 (табл. 1). В связи с термоядерными взрывами обсуждались и др. Т. р., например 16,14, 3.

Путём использования Т. р. в мирных целях может явиться Управляемый термоядерный синтез (УТС), с которым связывают надежды на решение энергетических проблем человечества, поскольку дейтерий, содержащийся в воде океанов, представляет собой практически неисчерпаемый источник дешёвого горючего для управляемых Т. р. Наибольший прогресс в исследованиях по УТС достигнут в рамках советской программы "Токамак". Аналогичные программы к середине 70-х гг. 20 в. стали энергично развиваться и в ряде др. стран. Для УТС наиболее важны Т. р. 7,5 и 4 [а также 12 для регенерации дорогостоящего Т]. Независимо от энергетических целей термоядерный реактор может быть использован в качестве мощного источника быстрых нейтронов. Однако значительное внимание привлекли к себе и "чистые" Т. р., не дающие нейтронов, например 10, 20 (табл. 1).

Лит.: Арцимович Л. А., Управляемые термоядерные реакции, 2 изд., М., 1963; Франк-Каменецкий Д. А., Физические процессы внутри звезд, М., 1959; Термоядерные реакции, в кн.: Проблемы современной физики, М., 1954, в. 1; Fowler W. A., Caughlan G. R., Zimmerman В. A., "Annual Review of Astronomy and Astrophysics", 1967, v. 5, p. 525.

В. И. Коган.

Термоядерная реакция         
Термоя́дерная реа́кция — разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые за счёт кинетической энергии их теплового движения.
Ядерный матрикс         
Ядерный скелет
Я́дерный ма́трикс, или я́дерный скеле́т () — скелетная структура клеточного ядра, поддерживающая форму и некоторые особенности морфологии ядра. В состав ядерного матрикса входят ядерная ламина, остаточное ядрышко и так называемый диффузный матрикс — сеть филаментов и гранул, соединяющих ядерную ламину с остаточным ядрышком.

Википедия

Термоядерная реакция

Термоя́дерная реа́кция — разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые за счёт кинетической энергии их теплового движения.

Что такое ЯДЕРНЫЙ СИНТЕЗ: РЕАКЦИИ ТЕРМОЯДЕРНОГО СИНТЕЗА - определение