метеорах - определение. Что такое метеорах
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое метеорах - определение

Найдено результатов: 23
метеор         
  • Метеорный поток [[Леониды]]
  • Геминид]]. Снято [[9 декабря]] [[2010 год]]а в [[САО РАН]]
  • Летящий метеор, 31.10.2015
  • Иллюстрация фаз полёта от входа в атмосферу до падения: [[метеороид]] − метеор ([[болид]]) − [[метеорит]]
ЯВЛЕНИЕ, ВОЗНИКАЮЩЕЕ ПРИ СГОРАНИИ В АТМОСФЕРЕ ЗЕМЛИ МЕТЕОРНЫХ ТЕЛ.
Метеоры
м.
1) Явление короткой вспышки небольшого твердого небесного тела, на огромной скорости вторгающегося в земную атмосферу из межпланетного пространства.
2) Само такое небесное тело.
МЕТЕОР         
  • Метеорный поток [[Леониды]]
  • Геминид]]. Снято [[9 декабря]] [[2010 год]]а в [[САО РАН]]
  • Летящий метеор, 31.10.2015
  • Иллюстрация фаз полёта от входа в атмосферу до падения: [[метеороид]] − метеор ([[болид]]) − [[метеорит]]
ЯВЛЕНИЕ, ВОЗНИКАЮЩЕЕ ПРИ СГОРАНИИ В АТМОСФЕРЕ ЗЕМЛИ МЕТЕОРНЫХ ТЕЛ.
Метеоры
а, м.
Явление короткой вспышки небольшого небесного тела, с большой скоростью влетающего в земную атмосферу из межпланетного пространства, а также (разг.) само такое тело. Мелькнул как м. (перен.: внезапно появившись, исчез). Метеорный - относящийся к метеору, метеорам.||Ср. БОЛИД, КОМЕТА, МЕТЕОРИТ.
"МЕТЕОР"      
1) метеорологическая космическая система, включающая искусственные спутники Земли "Космос" и "Метеор", пункты приема, обработки и распространения метеоинформации, службы контроля и управления бортовыми системами искусственных спутников Земли. Предназначена для сбора метеоинформации, а также научных исследований. Функционирует с 1967.2) Серия метеорологических искусственных спутников Земли "Метеор" (с 1969).
Метеор         
  • Метеорный поток [[Леониды]]
  • Геминид]]. Снято [[9 декабря]] [[2010 год]]а в [[САО РАН]]
  • Летящий метеор, 31.10.2015
  • Иллюстрация фаз полёта от входа в атмосферу до падения: [[метеороид]] − метеор ([[болид]]) − [[метеорит]]
ЯВЛЕНИЕ, ВОЗНИКАЮЩЕЕ ПРИ СГОРАНИИ В АТМОСФЕРЕ ЗЕМЛИ МЕТЕОРНЫХ ТЕЛ.
Метеоры
I Метео́р ("Метео́р")

немецкое экспедиционное судно. Построено в 1915 в Гданьске (Данциге). Водоизмещение 1200 т, длина 71 м, ширина 10,2 м. Парусное вооружение. Оборудовано для метеорологических, гидрологических, биологических исследований. Экспедициями на "М." проводились первые комплексные океанографические исследования в южной (1925-27) и северной (1928-30, 1933, 1935, 1938) частях Атлантического океана. В 1926 на "М." была обнаружена максимальная глубина Южно-Сандвичевой впадины (8264 м).

II Метео́р ("Метео́р")

советская метеорологическая космическая система; ИСЗ "Метеор". Система "М." включает метеорологический ИСЗ "Метеор", некоторые спутники из серии "Космос", наземные пункты приёма, обработки и распространения метеорологической информации, службы для контроля состояния бортовых систем ИСЗ и управления ими (см. Метеорологический спутник). Система начала функционировать в составе ИСЗ "Космос-144" и "Космос-156", запущенных соответственно 28 февраля и 27 апреля 1967. Система из двух ИСЗ даёт возможность в течение суток получать метеорологическую информацию с половины поверхности планеты. При одновременном нахождении на орбитах нескольких ИСЗ в значительной степени усложняются задачи управления ими и системой в целом. Для нормального функционирования "М." необходимо при прохождении каждого из метеорологических ИСЗ над пунктом приёма в короткие сроки обрабатывать телеметрическую информацию, которая содержит метеорологические данные и сведения о работе бортовой аппаратуры. Эта информация вводится в быстродействующие ЭВМ, которые практически сразу после окончания связи со спутником заканчивают обработку всех телеметрических данных, редактируют их и выдают в форме, удобной для использования (в виде графиков, карт и т.д.). Эти материалы быстро доводятся до метеорологических учреждений внутри страны и за рубежом. "М." существенно повышает надёжность прогнозов погоды, позволяет обнаруживать мощные циклоны и тайфуны в океанах, выбирать оптимальные маршруты для торгового и рыболовного флота, определять границы ледового покрова в арктических областях, включая Северный морской путь, получать сведения об областях устойчивых осадков (для сельского хозяйства) и т.п. Информация с "М." важна для разработки теории общей циркуляции атмосферы и создания надёжной методики долгосрочных прогнозов погоды.

Г. А. Назаров.

Метеора         
  • <center>Фрески</center>
  • <center>Кафоликон Преображенского монастыря</center>
  • <center>Двор монастыря Русану</center>
  • <center>Двор монастыря святого Стефана</center>
  • <center>Монастырь Святого Николая Анапавсаса</center>
  • <center>Монастырь Святой Троицы</center>
  • <center>Коридоры монастыря Святой Троицы</center>
  • Богородицы]] в монастыре Святой Троицы</center>
  • <center>Монастырь святого Стефана</center>
  • <center>Преображенский монастырь</center>
  • <center>Монастырь Варлаама</center>
  • <center>Мучения святых (фреска притвора кафоликона)</center>
  • <center>Монастырь Русану</center>
  • Μονή Αγίας Τριάδος
  • Вид на долину
(Meteora)

архитектурный комплекс в Фессалии (Греция), состоящий из 24 монастырей и скитов, расположенных в скалах. Главные монастыри, возникшие, вероятно, в 12 в., строились преимущественно в 14-18 вв. Среди монастырей М. [архитектура и росписи которых близки традициям Афона (см. Айон-Орос)]: Метеора (1387-88), Айос-Николаос (около 1388), Айя-Триада (1438), Варлаам (1517).

Лит.: Путешествие в метеорские и осоолимпийские монастыри в Фессалин архимандрита Порфирия Успенского в 1859 году, СПБ, 1896.

Метеора. Монастырь Метеора. 1387-1388.

метеор         
  • Метеорный поток [[Леониды]]
  • Геминид]]. Снято [[9 декабря]] [[2010 год]]а в [[САО РАН]]
  • Летящий метеор, 31.10.2015
  • Иллюстрация фаз полёта от входа в атмосферу до падения: [[метеороид]] − метеор ([[болид]]) − [[метеорит]]
ЯВЛЕНИЕ, ВОЗНИКАЮЩЕЕ ПРИ СГОРАНИИ В АТМОСФЕРЕ ЗЕМЛИ МЕТЕОРНЫХ ТЕЛ.
Метеоры
муж. вообще, всякое воздушное явление, все, что различаем в мироколице, атмосфере; водные: дождь и снег, град, туман и пр. - огневые: гроза, столбы, шары и камни; - воздушные: ветры, вихри, марево; световые: радуга, унии солнца, круги у луны и пр. Метеорный, -ричный, -рический, к сему относящийся. Метеорология жен. наука о воздушных явлениях и переменах, о погоде. Метеоролог муж. кто занимается наблюдениями и изысканиями погоды и явлений в воздухе; -логический, к сему делу относящийся. Метеоролит муж. аэролит, метеорный или воздушный камень. Им приписывали троякое происхождение: из огневых гор или с луны, и из пространства, где они обращались в виде планет. Метеорка жен. растение, цветок, предуказывающий погоду. Метеоризм муж. пученье живота воздухом.
МЕТЕОРЫ         
  • Метеорный поток [[Леониды]]
  • Геминид]]. Снято [[9 декабря]] [[2010 год]]а в [[САО РАН]]
  • Летящий метеор, 31.10.2015
  • Иллюстрация фаз полёта от входа в атмосферу до падения: [[метеороид]] − метеор ([[болид]]) − [[метеорит]]
ЯВЛЕНИЕ, ВОЗНИКАЮЩЕЕ ПРИ СГОРАНИИ В АТМОСФЕРЕ ЗЕМЛИ МЕТЕОРНЫХ ТЕЛ.
Метеоры
(от греч. meteora - атмосферные явления), вспышки и др. явления в верхней атмосфере Земли, вызванные вторжением в нее с космической скоростью (12 км/с и выше) твердых частиц или тел из космоса (т. н. метеорных тел, или метеоров). Вследствие взаимодействия с атмосферой (абляции) метеорные тела обычно полностью теряют свою массу ("сгорают"), при этом возбуждается свечение и происходит ионизация атмосферных газов. Яркие метеоры называются болидами.
Метеоры         
  • Метеорный поток [[Леониды]]
  • Геминид]]. Снято [[9 декабря]] [[2010 год]]а в [[САО РАН]]
  • Летящий метеор, 31.10.2015
  • Иллюстрация фаз полёта от входа в атмосферу до падения: [[метеороид]] − метеор ([[болид]]) − [[метеорит]]
ЯВЛЕНИЕ, ВОЗНИКАЮЩЕЕ ПРИ СГОРАНИИ В АТМОСФЕРЕ ЗЕМЛИ МЕТЕОРНЫХ ТЕЛ.
Метеоры
(от греч. meteora - атмосферные и небесные явления)

явления в верхней атмосфере, возникающие при вторжении в неё твёрдых частиц - метеорных тел. Вследствие взаимодействия с атмосферой метеорные тела частично или практически полностью теряют свою начальную массу; при этом возбуждается свечение и образуются ионизованные следы метеорного тела (см. Метеорный след). Не очень яркий М. представляется внезапно возникающим, быстро движущимся по ночному небу и угасающим звездообразным объектом, в связи с чем раньше М. называли "падающими звёздами". Очень яркие М., блеск которых превосходит блеск всех звёзд и планет (т. е. ярче примерно - 4 звёздной величины), называются Болидами; самые яркие из них могут наблюдаться даже при солнечном свете. Остатки метеорных тел, порождающих очень яркие болиды, могут выпадать на поверхность Земли в виде метеоритов (См. Метеориты). При вторжении в земную атмосферу более или менее компактной совокупности метеорных тел - при встрече Земли с метеорным роем - наблюдается Метеорный поток; наиболее интенсивные метеорные потоки называют метеорными дождями (См. Метеорный дождь). Одиночные М., непринадлежащие к тому или иному потоку, называют спорадическими.

Наука о М. включает в себя физическую теорию М., в которой рассматриваются взаимодействие метеорных тел с атмосферой и процессы в метеорных следах; метеорную астрономию (См. Метеорная астрономия), изучающую структуру, эволюцию и происхождение метеорного вещества в межпланетном пространстве; метеорную геофизику, изучающую параметры верхней атмосферы методами наблюдений М., а также влияние притока метеорного вещества на параметры атмосферы.

Историческая справка. М. и болиды известны человечеству с глубокой древности и нашли отражение в легендах и мифах многих народов (например, в древнегреческом мифе о Фаэтоне или в русских сказаниях о змеях-горынычах). Первые документальные сведения о М. найдены в древнеегипетском папирусе, написанном за 2000 лет до н. э. и хранящемся в Государственном Эрмитаже в Ленинграде. Начиная с 1768 до н. э. в старинных китайских рукописях неоднократно встречаются записи наблюдений М. В древнерусских летописях наиболее ранние записи о М. и болидах относятся к 1091, 1110, 1144 и 1215.

Попытки научного объяснения М. были сделаны древнегреческими философами. Диоген из Аполлонии (5 в. до н. э.) считал М. невидимыми звёздами, которые падают на Землю и угасают. Анаксагор (5 в. до н. э.) рассматривал М. как осколки раскалённой каменной массы Солнца. Аристотель (4 в. до н. э.), наоборот, считал М. земными испарениями, которые воспламеняются с приближением к огненной сфере неба; аналогичной, т. н. метеорологической гипотезы о природе М. придерживалось большинство античных и средневековых философов и учёных.

В 1794 Э. Хладна (См. Хладни) доказал космическое происхождение крупного железного метеорита, т. н. Палласова Железа, привезённого в Петербург с берегов Енисея П. Палласом, и правильно объяснил природу М. и болидов как явлений, связанных с вторжением в атмосферу Земли внеземных тел. В 1798 впервые были определены высоты 22 М. по одновременным наблюдениям из двух пунктов, удалённых друг от друга на 14 км. Во время метеорного дождя Леонид 1832-33 многими наблюдателями было замечено, что видимые пути М. расходятся из одной точки небесной сферы - радианта, на основании чего было сделано заключение, что траектории всех метеорных тел потока, вызвавшего метеорный дождь, параллельны, т. е. эти тела двигались по близким орбитам. Метеорные дожди, наблюдавшиеся в 1799, 1832-33, 1866, 1872 и 1885, привлекли к изучению М. внимание многих учёных: Б. Я. Швейцера, М. М. Гусева и Ф. А. Бредихина в России, Д. Араго и Ж. Био во Франции, Ф. Бесселя и А. Гумбольдта в Германии, У. Деннинга в Англии, Дж. Скиапарелли в Италии, Х. Ньютона в США и др. Была открыта связь метеорных потоков с кометами, вычислены орбиты ряда метеорных потоков, по данным систематических визуальных наблюдений М. составлены каталоги большого числа радиантов метеорных потоков. В 1885 Л. Вейнек в Праге получил первую фотографию М. В 1893 Х. Элкин в США применил вращающийся затвор (обтюратор) для определения угловой скорости М. при фотографических наблюдениях. В 1904 и 1907 С. Н. Блажко в Москве получил первые фотографии спектров М. В 1929-31 Х. Нагаока в Японии, Н. А. Иванов в СССР и А. Скеллет в США обнаружили влияние метеорной ионизации (См. Метеорная ионизация) на распространение радиоволн. В 1942-44 были проведены первые радиолокационные наблюдения М. В 1923-34 были заложены основы современной физической теории М.

Методы исследования метеоров: наблюдения М.; моделирование различных процессов, связанных с М., в лабораторных условиях и в космических экспериментах; изучение метеорного вещества в межпланетном пространстве и его взаимодействия с Землёй путём регистрации ударов метеорных тел с помощью датчиков, установленных на космических летательных аппаратах; наблюдения Зодиакального Света (См. Зодиакальный свет); сбор пыли космического происхождения на поверхности Земли, в глубоководных донных отложениях в океанах, в ископаемых льдах Арктики и Антарктиды; изучение метеоритов и др.

Визуальные наблюдения М. до конца 19 в. были практически единственным методом их изучения. Они позволили получить некоторое представление о суточных и сезонных вариациях численности М., о распространении радиантов М. по небесной сфере. Однако к середине 20 в. визуальные (в т. ч. и телескопические) наблюдения М. почти полностью утратили своё значение. Основную информацию о М. стали доставлять методы фотографических и радиолокационных наблюдений. Ведутся эксперименты по фотоэлектрическим, электроннооптическим и телевизионным наблюдениям М.

Систематическая фотография, наблюдения М. (рис. 1) с использованием метеорных патрулей (См. Метеорный патруль) были начаты в 30-е гг. 20 в. Одновременные наблюдения на двух установках, разнесённых на расстояние порядка 30 км, позволяют измерить высоту М. и ориентацию их траекторий. Если одна из установок снабжена обтюратором, периодически прерывающим экспозицию, фотография М. получается прерывистой (рис. 2); измеряя расстояние между перерывами можно измерить скорость М. на разных участках их траектории и т. о. - торможение в атмосфере. По этим данным может быть вычислена орбита метеорного тела, породившего данный М. Установленные перед объективами фотокамер призмы или дифракционные решётки позволяют фотографировать спектры М.

Метод радиолокационных наблюдений М. основан на регистрации радиоволны, отражённой от ионизованного следа М., - метеорного радиоэха. Вследствие дифракции радиоволн на формирующемся метеорном следе, амплитуда радиоэха имеет флуктуации во времени (рис. 3); измеряя расстояния между различными максимумами дифракционной картины радиоэха и зная расстояние до М., можно вычислить скорость М. Если используется несколько разнесённых на расстояния от 5 до 50 км приёмников, то можно определить также ориентацию следа М. и рассчитать орбиту метеорного тела до его входа в земную атмосферу. Наиболее мощные комплексы метеорной радиотехнической аппаратуры позволяют изучать очень слабые М. до + 12-15 звёздной величины, порождаемые метеорными телами с массами до 10-6-10-7 г. Радионаблюдения М. могут проводиться круглосуточно, в любую погоду. Однако для них характерна более низкая точность по сравнению с фотографическими наблюдениями. Наиболее интенсивные фотографические и радиолокационные наблюдения М. ведутся в СССР, США, ЧССР, Великобритании, Австралии.

Датчики, установленные на космических летательных аппаратах, позволяют регистрировать удары метеорных тел с массами 10-7-10-11 г, однако такие наблюдения не позволяют вычислить их скорости и ориентации траекторий.

Взаимодействие метеорных тел с атмосферой. Метеорные тела, движущиеся по эллиптическим орбитам вокруг Солнца, влетают в атмосферу Земли со скоростями от 11 до 73 км/сек. Т. о. начальная кинетическая энергия метеорных тел намного больше энергии, необходимой для их полного испарения, а начальная скорость существенно больше тепловой скорости молекул воздуха. Характер взаимодействия с атмосферой зависит от массы метеорного тела. Если размеры метеорного тела намного меньше длины свободного пробега молекул верхней атмосферы, взаимодействие осуществляется в результате ударов отдельных молекул о поверхность метеорного тела. Налетающая молекула полностью или частично передаёт метеорному телу свой импульс и кинетическую энергию, что приводит к торможению, нагреванию и распылению метеорного тела. Когда температура поверхности метеорного тела повышается примерно до 2000 К, начинается его интенсивное испарение, и дальнейший рост температуры резко замедляется. Кроме распыления и испарения, потеря вещества метеорного тела - т. н. абляция - может происходить в результате различных видов дробления - отделения от метеорного тела более мелких твёрдых частиц или капелек. При одновременном отделении от М. множества мелких частиц происходит кратковременное увеличение его блеска - вспышка. Очень мелкие метеорные тела с массами меньше примерно 10-9 г тормозятся на высотах 110-130 км, не успев нагреться до температуры начала интенсивного испарения, их кинетическая энергия расходуется главным образом на тепловое излучение с поверхности метеорного тела. Потеряв часть своей начальной массы вследствие распыления, такие мелкие метеорные тела затем оседают на поверхность Земли в виде микрометеоритов. Метеорные тела с массами, большими 10-9 г, не теряя космической скорости, т. е. той скорости, которую они имели до встречи с земной атмосферой, проникают в более плотные её слои, где роль потерь энергии на тепловое излучение с их поверхности сравнительно невелика. Метеорные тела с массами от 10-9 до 10 г, порождающие М. от +20 до - 4 звёздной величины, практически полностью теряют свою начальную массу до того, как они успевают затормозиться в атмосфере. При движении в атмосфере ещё более крупных метеорных тел, с которыми связаны яркие болиды, образуется ударная волна, что приводит к уменьшению теплопередачи и, следовательно, к уменьшению доли начальной массы, теряемой до того, как тело утратит свою космическую скорость. Затормозившиеся остатки таких очень крупных метеорных тел могут выпадать на поверхность Земли в виде метеоритов. Огромные метеорные тела с начальными массами в десятки тысяч т и более могут достигать поверхности Земли, частично сохраняя свою космическую скорость; при ударе о поверхность Земли происходит очень сильный взрыв, который может привести к образованию метеоритного кратера (См. Метеоритные кратеры).

Спектры метеоров и химический состав метеорных тел. На основании исследований спектров, полученных для ярких М. от +1 до - 10 звёздной величины, установлено, что излучение М. состоит главным образом из ярких эмиссионных линий атомных спектров со значительно более слабыми молекулярными полосами. Иногда наблюдается слабый непрерывный фон. Наиболее интенсивные линии в спектрах М. принадлежат атомам и ионам: Fe, Na, Mg, Mg+, Ca, Ca+, Cr, Si+, N, О. Эти же химические элементы входят и в состав метеоритов. Как и метеориты, метеорные тела разделяются на железные и каменные, причём преобладающими являются каменные. Однако отсутствие данных об эффективных сечениях возбуждения при столкновениях метеорных атомов с молекулами атмосферы не позволяет провести количественный химический анализ метеорных тел по наблюдаемым спектрам М.

Эффективность процесса ионизации обычно характеризуется коэффициентом метеорной ионизации (См. Метеорная ионизация) β - средним числом свободных электронов, порождаемых одним метеорным атомом, выделенным в результате абляции. Имеющиеся данные об эффективных сечениях ионизации (См. Ионизация) при столкновениях различных метеорных атомов с молекулами атмосферы позволили указать следующую зависимость β от скорости М.:

β = 4․10-25V7/2,

где V выражено в см/сек. Для скоростей, с которыми М. движутся в атмосфере, β изменяется примерно от 0,001 до 1. После пролёта М. остаётся ионизованный метеорный след длиной от нескольких км до нескольких десятков км; линейная электронная плотность следа α связана с визуальной абсолютной звёздной величиной М. приближённым соотношением

m = 35,1 - 2,5 lgα,

где α выражено в см-1. Начальный радиус ионизованного следа М. r0 определяется процессом термодиффузии за время установления теплового равновесия следа с окружающей атмосферой и может достигать нескольких м; ro возрастает с высотой и скоростью М., что приводит к уменьшению объёмной электронной плотности следа и к ухудшению условий для наблюдений быстрых высоких М. при радиолокационных наблюдениях. Свойство ионизованных метеорных следов отражать радиоволны используется для радиосвязи в диапазоне УКВ (см. Метеорная радиосвязь).

Высоты метеоров. Высоты появления М. обычно заключены в пределах 80-130 км, они систематически возрастают с увеличением скорости М. Высоты исчезновения М. обычно лежат в пределах 60-100 км и также возрастают с увеличением скорости М. и с переходом от более ярких к более слабым М. Очень яркие болиды могут исчезать на высотах 20-40 км.

Дробление и структура метеорных тел. При фотографических наблюдениях обнаруживается дробление значительные части метеорных тел, порождающих М. от О до + 4 звёздной величины. Мелкие осколки метеорных тел испытывают большее торможение, вследствие чего появляются светящиеся хвосты М. Дробление приводит к увеличению торможения М. и укорочению их видимого пути. Дробление может объясняться как рыхлой структурой метеорного тела с очень низкой плотностью (менее 1 г/см3), так и особенностями абляции в атмосфере плотных каменных и железных метеорных тел, связанными с неоднородностью их состава, а также с процессом сдувания с поверхности метеорного тела расплавленной плёнки.

Приток метеорного вещества на Землю. При средней внеатмосферной скорости 40 км/сек приближённая зависимость максимальной визуальной абсолютной звёздной величины метеора m от начальной массы метеорного тела M0 (выраженной в г) имеет вид

m = -2,5-2,5lgM0.

Распределение метеорных тел по массам обычно представляется степенным законом N Метеоры M0-s, причём показатель степени s близок к 2. Подсчитывая полное число М. в атмосфере Земли за сутки, можно оценить приток метеорного вещества: за сутки выпадает на Землю в среднем несколько десятков m метеорного вещества. Приток метеорного вещества оказывает существенное влияние на примесный газовый, ионный и аэрозольный состав верхней атмосферы, а также на ряд процессов в верхней атмосфере: образование серебристых облаков, спорадических слоев Es ионосферы и др.

Лит.: Фесенков В. Г., Метеорная материя в междупланетном пространстве, М. - Л., 1947; Федынский В. В., Метеоры, М., 1956; Левин Б. Ю., Физическая теория метеоров и метеорное вещество в солнечной системе, М., 1956; Астапович И. О., Метеорные явления в атмосфере Земли, М., 1958; Ловелл Б., Метеорная астрономия, пер. с англ., М., 1958; Мак-Кинли Д., Методы метеорной астрономии, пер. с англ., М., 1964; Бабаджанов П. Б., Крамер Е. Н., Методы и некоторые результаты фотографических исследований метеоров, М., 1963; Кащеев Б. Л., Лебединец В. Н., Лагутин М. Ф., Метеорные явления в атмосфере Земли, М., 1967.

В. Н. Лебединец.

Рис. 1. Фотография яркого метеора со вспышкой, полученная 11 августа 1964 в Душанбе с помощью фотокамеры, вращающейся в соответствии с суточным движением небесной сферы; видны изображения звёзд.

Рис. 2. Фотография яркого метеора со вспышкой, полученная 14 августа 1964 в Душанбе с помощью неподвижной фотокамеры с обтюратором; видны следы звёзд.

Рис. 3. Регистрация метеорного радиоэха при измерениях скоростей и радиантов метеоров (Харьков). На снимке видны: грубая и точная развёртки дальности; три дифракционные картины радиоэха, полученные в трёх разнесённых пунктах.

МЕТЕОР         
  • Метеорный поток [[Леониды]]
  • Геминид]]. Снято [[9 декабря]] [[2010 год]]а в [[САО РАН]]
  • Летящий метеор, 31.10.2015
  • Иллюстрация фаз полёта от входа в атмосферу до падения: [[метеороид]] − метеор ([[болид]]) − [[метеорит]]
ЯВЛЕНИЕ, ВОЗНИКАЮЩЕЕ ПРИ СГОРАНИИ В АТМОСФЕРЕ ЗЕМЛИ МЕТЕОРНЫХ ТЕЛ.
Метеоры
1. вспышка небольшого небесного тела, влетающего в верхнюю атмосферу из космоса.
Мелькнул как м. (внезапно появившись, исчез).
2. быстроходное пассажирское судно на подводных крыльях, ракета (в 3 знач.).
МЕТЕОР         
  • Метеорный поток [[Леониды]]
  • Геминид]]. Снято [[9 декабря]] [[2010 год]]а в [[САО РАН]]
  • Летящий метеор, 31.10.2015
  • Иллюстрация фаз полёта от входа в атмосферу до падения: [[метеороид]] − метеор ([[болид]]) − [[метеорит]]
ЯВЛЕНИЕ, ВОЗНИКАЮЩЕЕ ПРИ СГОРАНИИ В АТМОСФЕРЕ ЗЕМЛИ МЕТЕОРНЫХ ТЕЛ.
Метеоры
Слово "метеор" в греческом языке использовали для описания различных атмосферных феноменов, но теперь им обозначают явления, возникающие при попадании в верхние слои атмосферы твердых частиц из космоса. В узком смысле "метеор" - это светящаяся полоса вдоль трассы распадающейся частицы. Однако в обиходе этим словом часто обозначают и саму частицу, хотя по-научному она называется метеороидом. Если часть метеороида достигает поверхности, то ее называют метеоритом. В народе метеоры называют "падающими звездами". Очень яркие метеоры называют болидами; иногда этим термином обозначают только метеорные события, сопровождающиеся звуковыми явлениями.
Частота появления. Количество метеоров, которые может увидеть наблюдатель за определенный период времени, не постоянно. В хороших условиях, вдали от городских огней и при отсутствии яркого лунного света, наблюдатель может заметить 5-10 метеоров в час. У большинства метеоров свечение продолжается около секунды и выглядит слабее самых ярких звезд. После полуночи метеоры появляются чаще, поскольку наблюдатель в это время располагается на передней по ходу орбитального движения стороне Земли, на которую попадает больше частиц. Каждый наблюдатель может видеть метеоры в радиусе около 500 км вокруг себя. Всего же за сутки в атмосфере Земли возникают сотни миллионов метеоров. Полная масса влетающих в атмосферу частиц оценивается в тысячи тонн в сутки - ничтожная величина по сравнению с массой самой Земли. Измерения с космических аппаратов показывают, что за сутки на Землю попадает также около 100 т пылевых частиц, слишком мелких, чтобы вызывать появление видимых метеоров.
Наблюдение метеоров. Визуальные наблюдения дают немало статистических данных о метеорах, но для точного определения их яркости, высоты и скорости полета необходимы специальные приборы. Уже около века астрономы используют камеры для фотографирования метеорных следов. Вращающаяся заслонка (обтюратор) перед объективом фотокамеры делает след метеора похожим на пунктирную линию, что помогает точно определять интервалы времени. Обычно с помощью этой заслонки делают от 5 до 60 экспозиций в секунду. Если два наблюдателя, разделенные расстоянием в десятки километров, одновременно фотографируют один и тот же метеор, то можно точно определить высоту полета частицы, длину ее следа и - по интервалам времени - скорость полета.
Начиная с 1940-х годов астрономы наблюдают метеоры с помощью радара. Сами космические частицы слишком малы, чтобы их зарегистрировать, но при полете в атмосфере они оставляют плазменный след, который отражает радиоволны. В отличие от фотографии радар эффективен не только ночью, но также днем и в облачную погоду. Радар замечает мелкие метеороиды, недоступные фотокамере. По фотографиям точнее определяется траектория полета, а радар позволяет точно измерять расстояние и скорость. См. РАДИОЛОКАЦИЯ
; РАДИОЛОКАЦИОННАЯ АСТРОНОМИЯ
.
Для наблюдения метеоров используют и телевизионную технику. Электронно-оптические преобразователи позволяют регистрировать слабые метеоры. Используются и камеры с ПЗС-матрицами. В 1992 при записи на видеокамеру спортивных соревнований был зафиксирован полет яркого болида, закончившийся падением метеорита.
Скорость и высота. Скорость, с которой метеороиды влетают в атмосферу, заключена в пределах от 11 до 72 км/с. Первое значение - это скорость, приобретаемая телом только за счет притяжения Земли. (Такую же скорость должен получить космический аппарат, чтобы вырваться из гравитационного поля Земли.) Метеороид, прибывший из далеких областей Солнечной системы, вследствие притяжения к Солнцу приобретает вблизи земной орбиты скорость 42 км/с. Орбитальная скорость Земли около 30 км/с. Если встреча происходит "в лоб", то их относительная скорость 72 км/с. Любая частица, прилетевшая из межзвездного пространства, должна иметь еще большую скорость. Отсутствие столь быстрых частиц доказывает, что все метеороиды - члены Солнечной системы.
Высота, на которой метеор начинает светиться или отмечается радаром, зависит от скорости входа частицы. Для быстрых метеороидов эта высота может превышать 110 км, а полностью частица разрушается на высоте около 80 км. У медленных метеороидов это происходит ниже, где больше плотность воздуха. Метеоры, сравнимые по блеску с ярчайшими звездами, образуются частицами с массой в десятые доли грамма. Более крупные метеороиды обычно разрушаются дольше и достигают малых высот. Они существенно тормозятся из-за трения в атмосфере. Редкие частицы опускаются ниже 40 км. Если метеороид достигает высот 10-30 км, то его скорость становится менее 5 км/с, и он может упасть на поверхность в виде метеорита.
Орбиты. Зная скорость метеороида и направление, с которого он подлетел к Земле, астроном может вычислить его орбиту до столкновения. Земля и метеороид сталкиваются в том случае, если их орбиты пересекаются и они одновременно оказываются в этой точке пересечения. Орбиты метеороидов бывают как почти круговыми, так и предельно эллиптичными, уходящими дальше планетных орбит.
Если метеороид приближается к Земле медленно, значит, он движется вокруг Солнца в том же направлении, что и Земля: против часовой стрелки, если смотреть с северного полюса орбиты. Большинство орбит метеороидов выходит за пределы земной орбиты, и их плоскости наклонены к эклиптике не очень сильно. Падение почти всех метеоритов связано с метеороидами, имевшими скорости менее 25 км/с; их орбиты полностью лежат внутри орбиты Юпитера. Большую часть времени эти объекты проводят между орбитами Юпитера и Марса, в поясе малых планет - астероидов. Поэтому считается, что астероиды служат источником метеоритов. К сожалению, мы можем наблюдать только те метеороиды, которые пересекают орбиту Земли; очевидно, эта группа недостаточно полно представляет все малые тела Солнечной системы. См. также АСТЕРОИД
.
У быстрых метеороидов орбиты более вытянуты и сильнее наклонены к эклиптике. Если метеороид подлетает со скоростью более 42 км/с, то он движется вокруг Солнца в направлении, противоположном направлению движения планет. Тот факт, что по таким орбитам движутся многие кометы, указывает, что эти метеороиды являются осколками комет. См. также КОМЕТА
.
Метеорные потоки. В некоторые дни года метеоры появляются гораздо чаще, чем обычно. Это явление называют метеорным потоком, когда наблюдаются десятки тысяч метеоров в час, создавая изумительное явление "звездного дождя" по всему небу. Если проследить на небе пути метеоров, то покажется, что все они вылетают из одной точки, называемой радиантом потока. Это явление перспективы, подобное сходящимся у горизонта рельсам, указывает, что все частицы движутся по параллельным траекториям.
См. также:
Что такое метеор - определение