плюри-производная - определение. Что такое плюри-производная
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое плюри-производная - определение

Производная (обобщение); Односторонняя производная; Производная (обобщения); Производные высших порядков; Правосторонняя производная; Левосторонняя производная
  • Касательное отображение <math>d\varphi \colon \, TM \to TN</math>

Производная Лагранжа         
Производная Лагранжа, также известная как субстанциональная производная или материальная производная, — это производная, взятая в зависимости от системы координат, движущейся со скоростью u и часто используемая в гидроаэромеханике и классической механике. Она определена как от скалярной функции \phi(\vec{r},t) координат и времени, так и от векторной \vec{v}(\vec{r},t):
Слабая производная         
«Слабая производная» (в математике) — обобщение понятия производной функции («сильная производная») для функций, интегрируемых по Лебегу (то есть из пространства L_1), но не являющихся дифференцируемыми.
Полная производная         

производная по t от функции у = F (t, x1,..., xn), зависящей от t и x1,..., xn. П. п. выражается формулой

.

Википедия

Производная (математика)

Производная — фундаментальное математическое понятие, используемое в различных вариациях (обобщениях) во многих разделах математики. Это базовая конструкция дифференциального исчисления, допускающая много вариантов обобщений, применяемых в математическом анализе, дифференциальной топологии и геометрии, алгебре.

Общее между различными вариациями и обобщениями заключается в том, что производная отображения характеризует степень изменения образа отображения при (бесконечно) малом изменении аргумента. В зависимости от рассматриваемых математических структур конкретизируется содержание данного понятия.

Только для случая топологических линейных пространств известно около 20 обобщений понятия производной.

Что такое Производная Лагранжа - определение