прилив - определение. Что такое прилив
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое прилив - определение

КОЛЕБАНИЕ УРОВНЯ МОРЯ, ВЫЗВАННОЕ ГРАВИТАЦИОННЫМ ВЗАИМОДЕЙСТВИЕМ ЗЕМЛИ С ЛУНОЙ (И В МЕНЬШЕЙ СТЕПЕНИ - С СОЛНЦЕМ), А ТАКЖЕ ВРАЩЕНИЕМ ЗЕМЛИ
Приливы; Прилив; Отлив (геофизическое явление); Приливы и отливы; Сизигийный прилив; Квадратурный прилив; Отливы и приливы
  • Залив [[Фанди]] во время прилива и отлива.
  • Малая вода. Гавань деревни Юйао на Восточно-Китайском море. (Уезд [[Цаннань]], [[Чжэцзян]])
  • Малая вода (Бретань, Франция)
  • Составляющая прилива M2
  • Отлив у Сен-Мало
  • чилима]]».
Найдено результатов: 21
прилив         
м.
1) Периодически повторяющийся подъем, повышение уровня открытого моря (противоп.: отлив).
2) перен. Скопление кого-л., чего-л. в большом количестве вследствие движения откуда-л.; приток.
3) перен. Подъем в развитии чего-л.
4) перен. Избыток чувств, сил, энергии и т.п.
5) Утолщение на отлитом изделии.
ПРИЛИВ         
1. скопление чего-нибудь движущегося, приток.
П. крови к голове. П. энергии(перен.:нарастание,подъем).
2. периодически повторяющееся поднятие уровня открытого моря.
В часы прилива.
прилив         
ПРИЛ'ИВ, прилива, ·муж.
1. Периодически повторяющийся подъем, повышение уровня открытого моря; ант. отлив
. "Прилив растет и быстро нас уносит в неизмеримость темных волн." Тютчев. "Есть у воды своя пора: часы прилива, часы отлива." Маяковский.
2. перен. Скопление вследствие движения откуда-нибудь, приток. Прилив народу. Прилив денег. Прилив крови к голове. Прилив чувств. "Кочующей мысли прибой и отбой, приливы любви и отливы." А.К.Толстой.
3. перен. Подъем в развитии чего-нибудь. "В период 1903-1905 ·гг. тактика партии была наступательная, ибо был прилив революции, движение поднималось в гору, и тактика должна была исходить из этого факта." Сталин.
4. Наращение, утолщение на отливаемом изделии (тех.).
Прилив и отлив         
Прили́в и отли́в — периодические колебания уровня океана или моря, являющиеся результатом воздействия приливных сил Луны и Солнца, однако приливообразующая сила Луны в 2,17 раз больше приливообразующей силы Солнца, поэтому характеристики прилива в основном зависят от взаимного положения Луны и Земли.
приливы         
преходящие ощущения жара в коже лица, шеи, туловища, вызванные резким расширением кожных сосудов; наблюдаются чаще при климактерическом синдроме.
ПРИЛИВЫ         
периодические колебания уровня моря (морские приливы), обусловленные силами притяжения Луны и Солнца в соединении с центробежными силами, развивающимися при вращении систем Земля - Луна и Земля - Солнце. Под действием этих же сил происходят деформации твердого тела Земли (земные приливы) и колебания атмосферного давления (атмосферные приливы). Большая из этих сил - лунная - определяет основные черты морских приливов; обычно прилив и отлив бывают 2 раза в сутки. Максимальное поднятие воды называют полной водой, минимальное - малой водой; величина приливов в открытом океане ок. 1 м, у берегов до 18 м (зал. Фанди в Атлантическом ок.). В результате земных приливов происходят вертикальные смещения земной поверхности до 50 см, изменения силы тяжести до 0,25.10-5 м/с2 (0,25 мгал) на экваторе и другие явления, изучение которых позволяет исследовать внутреннее строение Земли и особенности строения земной коры. Атмосферные приливы вызывают полусуточные изменения приземного атмосферного давления и играют большую роль в динамике верхней атмосферы.
Приливы         

периодические колебания уровня моря (морские П.), обусловленные силами притяжения Луны и Солнца. Под действием этих же сил происходят деформации твёрдого тела Земли (земные П.) и колебания атмосферного давления (атмосферные П.).

Под воздействием Луны (Солнца) возникают приливообразующие силы, которые представляют собой разность между силами притяжения Луной частицы (элемента массы воды, земли или воздуха), расположенной в любой точке Земли, например на её поверхности, и притяжением Луной частицы той же массы в центре Земли (см. рис.). Эти силы пропорциональны массе Луны (m), расстоянию от центра Земли (r) и обратно пропорциональны кубу расстояния от Земли до Луны (R), кроме того, они зависят от зенитного расстояния Луны (z).

Вертикальная составляющая приливной силы (на единицу массы) Fв изменяет силу тяжести на величину

,

где G - Гравитационная постоянная. Сила тяжести уменьшается на поверхности Земли, когда Луна находится в Зените или Надире, на 0,1 мгал, или на 1․10-7 своей величины, и увеличивается на половину этой величины в тех местах Земли, где Луна в рассматриваемый момент восходит или заходит.

Горизонтальная составляющая приливных сил равна 0, когда Луна находится в зените, надире или на горизонте, и максимальна, когда зенитное расстояние Луны равно 45° и достигает 0,08 мгал:

Приливообразующая сила, вызванная Солнцем, определяется аналогично, но из-за большего расстояния (несмотря на значительно большую массу Солнца) она в среднем в 2,16 раза меньше.

Вследствие суточного вращения Земли и движения Земли, Луны и Солнца по своим орбитам приливообразующая сила в каждой точке на поверхности Земли непрерывно меняется во времени, никогда точно не повторяясь. Однако приливные силы можно представить как сумму большого числа строго периодических составляющих, определяемых из теории движения Луны вокруг Земли и Земли вокруг Солнца. Таблицы, составленные английским учёным Д. Картрайтом (1973), содержат около 500 членов. Эти периодические приливные силы разделяются на 4 типа. Долгопериодные П. дают наибольшие колебания уровенной поверхности на полюсах, вдвое меньшие на экваторе и нулевые на широтах ± 35,3°. К ним относятся П. с периодами в 18,6 года, 1 год, 0,5 года, 1 месяц и 2 недели (Mf). Эти П. периодически изменяют сжатие Земли, её полярный момент инерции и угловую скорость вращения Земли. Суточные П. возникают вследствие несовпадения плоскости экватора с плоскостью лунной орбиты и плоскостью эклиптики. Они дают наибольшие поднятия и опускания земных П. на широтах ± 45° и нулевые на полюсах и экваторе. Главные из них - лунная волна O1 с периодом 25,8 ч и лунно-солнечная волна K1 с периодом в 23,9 ч. Полусуточные П., дающие максимальные поднятия и опускания для статических П. на экваторе и нулевые на полюсах. Главные полусуточные волны - это лунная волна M2 с периодом в 12,4 ч и приблизительно в 2 раза меньшая солнечная волна S2 с периодом в 12 ч. Короткопериодные волны с периодами около 1/3 сут и короче.

Н. Н. Парийский.

Морские П. Изменения приливообразующей силы вызывают изменения силы тяжести и величины и направления горизонтальных составляющих приливных сил, а следовательно, и направления отвесной линии. Под действием этих сил поверхность океанов стремится занять положение, перпендикулярное отвесной линии, т. е. изменяющееся со временем в каждой точке Земли. Если бы вся Земля была покрыта океанами и водные массы успевали достичь равновесного состояния, как это вначале предполагалось в статической теории приливов Ньютона, то под влиянием Луны сферическая поверхность океана смещалась и принимала бы форму вытянутого эллипсоида с большой осью, направленной к Луне. К этим смещениям добавлялись бы смещения, соответствующие аналогичным эллипсоидальным деформациям с большой осью, направленной к Солнцу. Максимальные поднятия и опускания уровня моря при этом достигали бы всего 0,5 м.

В действительности океан покрывает не всю Землю, и приливная волна, распространяясь, встречает преграды в виде материков, испытывает трение о дно, возникают обратные течения; в результате всего этого распределения амплитуд и фаз различных приливных волн чрезвычайно сильно отличаются от соответствующих величин, даваемых статической теорией. Т. о., величина и характер П. зависят не только от взаимного положения Земли, Луны и Солнца, но также от географической широты, глубины моря и формы береговой линии. В 1775 П. Лапласом была разработана динамическая теория П., основанная на общих уравнениях гидродинамики, которая дала возможность рассчитывать распространение приливных волн в морях и океанах.

Наибольшее поднятие воды называют полной водой, минимальное - малой водой. В то время как в океане вдали от материков величина П. порядка 1 м, у берегов разность последовательных полной и малой воды может достигать очень большого значения. Так, в заливе Фанди (Атлантическое побережье Канады) наибольшая величина П. достигает 18 м, в заливе Фробишер на о. Баффинова Земля и в некоторых пунктах пролива Ла-Манш - до 15 м, в Пенжинской губе на С.-В. Охотского моря - до 13 м, в Мезенском заливе (Белое море) - до 10 м. Приливная волна, проникая в устье реки, может вызвать появление крутой волны.

Для обеспечения мореплавания в СССР, Великобритании, США, Японии и др. странах издаются "Таблицы приливов", содержащие данные о высоте прилива в нужных портах на каждый час в течение года.

Распределение приливных волн в открытом океане определяется решением на ЭВМ гидродинамических дифференциальных уравнений Лапласа с учётом конфигурации береговой линии, распределения глубин океана и законов трения о дно. В результате решения этих уравнений создаются котидальные карты Мирового океана, на которых кривыми (т. н. котидальными линиями) соединяют точки волны с одинаковой фазой, например положение максимума данной волны через каждый час, а другой системой кривых соединяют точки с одинаковой амплитудой данной волны. Наиболее подробные котидальные карты для четырёх основных волн - M2, S2, K1 и O1 - составлены в СССР К. Т. Богдановым и В. А. Магариком. Океанические П. своим давлением прогибают упругое тело Земли, поэтому знание котидальных карт необходимо при интерпретации наблюдений земных П.

Б. Л. Лагутин.

Земные П. Земля также деформируется под действием приливных сил; эти деформации называются земными или упругими П. При прохождении упругих приливных волн вертикальные смещения земной поверхности могут достигать 50 см (при положениях Луны и Солнца в зените или надире), а горизонтальные - 5 см. Приливные изменения силы тяжести на экваторе достигают 0,25 мгал (см. Вариации силы тяжести), изменения отвесной линии - 0,01'', а изменения наклонов земной поверхности, т. е. угла между поверхностью земли и отвесом, - 0,02'', приливные растяжения и сжатия поверхностных слоев Земли - порядка 10-8. Объёмные деформации при земных П. проявляются в периодических изменениях уровня воды в шурфах и колодцах, уровня лавы в вулканах, в дебете воды некоторых источников. Долгопериодные П., деформируя Землю, изменяют скорость её вращения, что обнаруживается при сравнении астрономического времени, определяемого по вращению Земли, с атомным временем (см. Служба времени). Величина всех этих приливных эффектов зависит от внутреннего строения Земли, т. е. распределения плотностей и упругих свойств различных слоев Земли на всех глубинах от поверхности до центра. Т. о., наблюдения за земными П. позволяют изучать внутреннее строение Земли.

Теория, связывающая наблюдаемые явления земных П. с внутренним строением Земли, разработана Г. Такэути (Япония), X. Джефрисом (Великобритания), Р. Висенти (Португалия) и наиболее детально М. С. Молоденским (См. Молоденский). В частности, теоретически было предсказано явление резонанса между некоторыми суточными земными приливными волнами (K1 и др.) и суточной нутацией Земли, вызванное жидким состоянием ядра Земли. Эта теория подтвердилась наблюдениями приливных изменений силы тяжести и наклонов.

Измерения приливных изменений силы тяжести, кроме изучения глобальных характеристик строения Земли, позволяют изучать региональные глубинные неоднородности мантии Земли. Эти данные необходимы при гравиметрической съёмке для геодезических целей, при геофизической разведке полезных ископаемых, а также для изучения временных изменений силы тяжести. Измерения приливных наклонов указывают на зависимость их от локальных особенностей строения земной коры и могут быть использованы для изучения блокового строения земной коры и глубинных разломов.

Н. Н. Парийский.

Атмосферные П. В атмосфере наряду с суточными колебаниями температуры воздуха существуют очень слабые суточные и сравнительно интенсивные полусуточные изменения приземного атмосферного давления. Выделение их затруднительно на фоне довольно интенсивных и беспорядочных погодных изменений. Амплитуда этих вариаций максимальна в тропической зоне (около 1 мбар для полусуточной компоненты) и сильно уменьшается при удалении в область умеренных и высоких широт. Хотя приливные силы Луны в 2 с лишним раза больше приливных сил Солнца, в атмосфере солнечные П. превалируют над лунными, в отличие от П. в море и земле.; Объяснение этому дали новейшие исследования верхней атмосферы. Атмосферные П., период которого равен половине солнечных суток, вызывается в основном не гравитационным, а термическим воздействием Солнца на атмосферу. Ультрафиолетовая солнечная радиация, поглощаясь озоном в стратосфере, ведёт к разогреванию зтих слоев атмосферы, что, в свою очередь, приводит к возбуждению колебаний метеорологических элементов (давления, температуры, плотности, скорости ветра) с периодами - сутки, полусутки и т.д. Основная доля энергии суточной компоненты приходится на волны, которые не распространяются из верхней атмосферы к Земле, что объясняет крайнюю незначительность суточного колебания атмосферного давления у поверхности Земли. Напротив, полусуточные колебания распространяются по направлению к Земле, поэтому их амплитуда у поверхности Земли значительно больше.

Атмосферные П. играют большую роль в динамике верхней атмосферы. Суточные и полусуточные изменения параметров на больших высотах настолько значительны, что без их знания невозможен расчёт движения искусственных объектов в верхней атмосфере.

Е. П. Чунчузов.

Космогоническая роль П. Наличие трения или вязкости в случае земных П., а также сложных материковых границ для морских П. приводит к тому, что приливный горб выносится вперёд, в сторону вращения Земли, и его ось не направлена точно на приливообразующее тело, В этом случае при вращении планеты быстрее, нежели обращение спутника (как это имеет место в системе Земля - Луна), силы, действующие со стороны Луны (спутника) на приливную деформацию Земли (планеты), дают пару сил, тормозящих вращение Земли. С другой стороны, действие приливной деформации на Луну приводит к удалению Луны (спутника) от Земли. Это вековое замедление вращения Земли было предсказано ещё Дж. Дарвином (см. Вращение Земли). Современные расчёты приливного замедления вращения Земли показывают, что главная часть замедления вызвана океаническими приливами. Земные П. также замедляют вращение Земли, но значительно меньше, чем морские. Суммарное приливное замедление вращения Земли должно составлять около 3,5 мсек в столетие, хотя астрономические наблюдения указывают на удлинение суток за последние 2000 лет в среднем на 2,0 мсек в столетие. Т. о., существуют причины, ещё не выясненные, ускоряющие вращение Земли приблизительно на 1,5 мсек в столетие. Луна под действием П. удаляется от Земли на 3 см в год. Влиянием П. объясняется то, что Луна обращена к Земле одной стороной, а также медленность вращения Меркурия. В космогонии изучается влияние П. на изменения орбиты Луны (её положения и размеров) относительно Земли.

Связь между колебаниями уровня моря и фазами Луны была замечена ещё в древности. Первая статическая теория была предложена И. Ньютоном (1688) и развита его последователями Д. Бернулли, К. Маклореном, Л. Эйлером и др. Динамическая теория П. Лапласа (1775) была усовершенствована англ. учёными Дж. Эри (1848), У. Томсоном (Кельвином, 1895) и Дж. Дарвином. Числовые методы предсказания морских П. усовершенствованы англ. учёными А. Дудсоном (1928) и Д. Картрайтом (1973). Методы анализа земных приливов разработаны А. Дудсоном, Р. Леколазе (Франция), Б. П. Перцевым и П. С. Матвеевым (СССР) и А. П. Венедиковым (Болгария). Эволюционно-космогоническое значение П. впервые разработано Дж. Дарвином (1911).

В России первые наблюдения над П. относятся к началу 18 в. В 1848 Ф. П. Литке опубликовал котидальную карту Баренцева м. А. М. Бухтеев и В. С. Стахевич обработали наблюдения над П., собранные до 1907. Изучению морских П. посвящены работы сов. учёных Ю. М. Шокальского, В. В. Шулейкина, Л. Н. Сретенского, Н. Е. Кочина, Н. П. Владимирского, А. И. Дуванина, Б. А. Кочана, К. Р. Богданова и В. А. Магарика. Земные П. в СССР систематически начал наблюдать А. Я. Орлов с помощью наклономеров, а затем гравиметров, создав для этой цели Полтавскую гравиметрическую обсерваторию. В изучение земных П. большой вклад внесли работы сов. учёных М. С. Молоденского, Н. Н. Парийского и др.

Космогоническое значение П. и их влияние на орбиту Луны изучалось амер. учёными Г. Дж. Ф. Макдональдом, П. Гольдрайх и У. Каула, а в СССР - А. С. Мониным и Е. Л. Рускол.

Н. Н. Парийский.

Лит.: Шокальский Ю. М., Океанография, Л., 1959; Дуванин А. И., Приливы в море, Л., 1960; Дарвин Д. Г., Приливы и родственные им явления в солнечной системе, пер. с англ., М. - П., 1923; Ламб Г., Гидродинамика, пер. с англ., М. - Л., 1947, гл. 8; Молоденский М. С., Упругие приливы, свободная нутация и некоторые вопросы строения Земли, "Тр. Геофизического института АН СССР", 1953, № 19; Мельхиор П., Земные приливы, пер. с англ., М., 1968; Парийский Н. Н., Кузнецов М. В. и Кузнецова Л, В., О влиянии океанических приливов на вековое замедление вращения Земли, "Физика земли", 1972, № 2, 12; Siebert М., Atmospheric tides, в кн.: Advances in geophysics, v. 7, N. Y. - L., 1961.

Распределение приливообразующих сил в различных точках (А, В, С, ...) поверхности Земли, вызванных притяжением Луны; тонкие стрелки - силы притяжения, пунктирные - вычитаемая сила притяжения в центре Земли, жирные - приливные силы.

Приливы и отливы         

периодические колебания уровня моря, атмосферного давления и деформации твёрдого тела Земли, обусловленные силами притяжения Луны и Солнца. Подробнее см. Приливы.

ПРИЛИВЫ И ОТЛИВЫ         
периодические колебания уровня воды (подъемы и спады) в акваториях на Земле, которые обусловлены гравитационным притяжением Луны и Солнца, действующим на вращающуюся Землю. Все крупные акватории, включая океаны, моря и озера, в той или иной степени подвержены приливам и отливам, хотя на озерах они невелики.
Самый высокий уровень воды, наблюдаемый за сутки или половину суток во время прилива, называется полной водой, самый низкий уровень во время отлива - малой водой, а момент достижения этих предельных отметок уровня - стоянием (или стадией) соответственно прилива или отлива. Средний уровень моря - условная величина, выше которой расположены отметки уровня во время приливов, а ниже - во время отливов. Это результат осреднения больших рядов срочных наблюдений. Средняя высота прилива (или отлива) - осредненная величина, рассчитанная по большой серии данных об уровнях полных или малых вод. Оба этих средних уровня привязаны к местному футштоку.
Вертикальные колебания уровня воды во время приливов и отливов сопряжены с горизонтальными перемещениями водных масс по отношению к берегу. Эти процессы осложняются ветровым нагоном, речным стоком и другими факторами. Горизонтальные перемещения водных масс в береговой зоне называют приливными (или приливо-отливными) течениями, тогда как вертикальные колебания уровня воды - приливами и отливами. Все явления, связанные с приливами и отливами, характеризуются периодичностью. Приливные течения периодически меняют направление на противоположное, тогда как океанические течения, движущиеся непрерывно и однонаправленно, обусловлены общей циркуляцией атмосферы и охватывают большие пространства открытого океана (см. также ОКЕАН).
В переходные интервалы от прилива к отливу и наоборот трудно установить тренд приливного течения. В это время (не всегда совпадающее со стоянием прилива или отлива) вода, как говорят, "застаивается".
Приливы и отливы циклически чередуются в соответствии с изменяющейся астрономической, гидрологической и метеорологической обстановкой. Последовательность фаз приливов и отливов определяется двумя максимумами и двумя минимумами в суточном ходе.
Объяснение происхождения приливообразующих сил. Хотя Солнце играет существенную роль в приливо-отливных процессах, решающим фактором их развития служит сила гравитационного притяжения Луны. Степень воздействия приливообразующих сил на каждую частицу воды, независимо от ее местоположения на земной поверхности, определяется законом всемирного тяготения Ньютона. Этот закон гласит, что две материальные частицы притягиваются друг к другу с силой, прямо пропорциональной произведению масс обеих частиц и обратно пропорциональной квадрату расстояния между ними. При этом подразумевается, что чем более масса тел, тем больше возникающая между ними сила взаимного притяжения (при одинаковой плотности меньшее тело создаст меньшее притяжение, чем большее). Закон также означает, что чем больше расстояние между двумя телами, тем меньше между ними притяжение. Поскольку эта сила обратно пропорциональна квадрату расстояния между двумя телами, в определении величины приливообразующей силы фактор расстояния играет значительно бльшую роль, чем массы тел.
Гравитационное притяжение Земли, действующее на Луну и удерживающее ее на околоземной орбите, противоположно силе притяжения Земли Луной, которая стремится сместить Землю по направлению к Луне и "приподнимает" все объекты, находящиеся на Земле, в направлении Луны. Точка земной поверхности, расположенная непосредственно под Луной, удалена всего на 6400 км от центра Земли и в среднем на 386 063 км от центра Луны. Кроме того, масса Земли приблизительно в 89 раз больше массы Луны. Таким образом, в этой точке земной поверхности притяжение Земли, действующее на любой объект, приблизительно в 300 тыс. раз больше притяжения Луны. Распространено представление, что вода на Земле, находящаяся прямо под Луной, поднимается в направлении Луны, что приводит к оттоку воды из других мест земной поверхности, однако, поскольку притяжение Луны столь мало в сравнении с притяжением Земли, его было бы недостаточно, чтобы поднять столь огромный вес.
Тем не менее океаны, моря и большие озера на Земле, будучи крупными жидкими телами, свободны перемещаться под действием силы бокового смещения, и любая слабая тенденция к сдвигу по горизонтали приводит их в движение. Все воды, не находящиеся непосредственно под Луной, подчиняются действию составляющей силы притяжения Луны, направленной тангенциально (касательно) к земной поверхности, как и ее составляющей, направленной вовне, и подвергаются горизонтальному смещению относительно твердой земной коры. В результате возникает течение воды из прилегающих районов земной поверхности по направлению к месту, находящемуся под Луной. Результирующее скопление воды в точке под Луной образует там прилив. Собственно приливная волна в открытом океане имеет высоту лишь 30-60 см, но она значительно увеличивается при подходе к берегам материков или островов.
За счет перемещения воды из соседних районов в сторону точки под Луной происходят соответствующие отливы воды в двух других точках, удаленных от нее на расстояние, равное четверти окружности Земли. Интересно отметить, что понижение уровня океана в этих двух точках сопровождается повышением уровня моря не только на стороне Земли, обращенной к Луне, но и на противоположной стороне. Этот факт тоже объясняется законом Ньютона. Два или несколько объектов, расположенные на разных расстояниях от одного и того же источника тяготения и подвергающиеся, следовательно, ускорению силы тяжести разной величины, перемещаются относительно друг друга, поскольку ближайший к центру тяготения объект сильнее всего притягивается к нему. Вода в подлунной точке испытывает более сильное притяжение к Луне, чем Земля под ней, но Земля, в свою очередь, сильнее притягивается к Луне, чем вода, на противоположной стороне планеты. Таким образом, возникает приливная волна, которая на обращенной к Луне стороне Земли называется прямой, а на противоположной - обратной. Первая из них всего на 5% выше второй.
Благодаря вращению Луны по орбите вокруг Земли между двумя последовательными приливами или двумя отливами в данном месте проходит примерно 12 ч 25 мин. Интервал между кульминациями последовательных прилива и отлива ок. 6 ч 12 мин. Период продолжительностью 24 ч 50 мин между двумя последовательными приливами называется приливными (или лунными) сутками.
Неравенства величин прилива. Приливо-отливные процессы очень сложны, поэтому, чтобы разобраться в них, необходимо принимать во внимание многие факторы. В любом случае главные особенности будут определяться: 1) стадией развития прилива относительно прохождения Луны; 2) амплитудой прилива и 3) типом приливных колебаний, или формой кривой хода уровня воды. Многочисленные вариации в направлении и величине приливообразующих сил порождают разницу в величинах утренних и вечерних приливов в данном порту, а также между одними и теми же приливами в разных портах. Эти различия называются неравенствами величин прилива.
Полусуточный эффект. Обычно в течение суток благодаря основной приливообразующей силе - вращению Земли вокруг своей оси - образуются два полных приливных цикла. Если смотреть со стороны Северного полюса эклиптики, то очевидно, что Луна вращается вокруг Земли в том же направлении, в каком Земля вращается вокруг своей оси, - против часовой стрелки. При каждом следующем обороте данная точка земной поверхности вновь занимает позицию непосредственно под Луной несколько позже, чем при предыдущем обороте. По этой причине и приливы и отливы каждый день запаздывают приблизительно на 50 мин. Эта величина называется лунным запаздыванием.
Полумесячное неравенство. Этому основному типу вариаций присуща периодичность примерно в 143/4 суток, что связано с вращением Луны вокруг Земли и прохождением ею последовательных фаз, в частности сизигий (новолуний и полнолуний), т.е. моментов, когда Солнце, Земля и Луна располагаются на одной прямой. До сих пор мы касались только приливообразующего воздействия Луны. Гравитационное поле Солнца также действует на приливы, однако, хотя масса Солнца намного больше массы Луны, расстояние от Земли до Солнца настолько превосходит расстояние до Луны, что приливообразующая сила Солнца составляет менее половины приливообразующей силы Луны. Однако, когда Солнце и Луна находятся на одной прямой как по одну сторону от Земли, так и по разные (в новолуние или полнолуние), силы их притяжения складываются, действуя вдоль одной оси, и происходит наложение солнечного прилива на лунный. Подобным же образом притяжение Солнца усиливает отлив, вызванный воздействием Луны. В результате приливы становятся выше, а отливы ниже, чем если бы они были вызваны только притяжением Луны. Такие приливы называются сизигийными.
Когда векторы силы притяжения Солнца и Луны взаимно перпендикулярны (во время квадратур, т.е. когда Луна находится в первой или последней четверти), их приливообразующие силы противодействуют, поскольку прилив, вызванный притяжением Солнца, накладывается на отлив, вызванный Луной. В таких условиях приливы не столь высоки, а отливы - не столь низки, как если бы они были обусловлены только силой притяжения Луны. Такие промежуточные приливы и отливы называются квадратурными. Диапазон отметок полных и малых вод в этом случае сокращается приблизительно в три раза по сравнению с сизигийным приливом. В Атлантическом океане как сизигийные, так и квадратурные приливы обычно запаздывают на сутки по сравнению с соответствующей фазой Луны. В Тихом океане такое запаздывание составляет лишь 5 ч. В портах Нью-Йорк и Сан-Франциско и в Мексиканском заливе сизигийные приливы на 40% выше квадратурных.
Лунное параллактическое неравенство. Период колебаний высот приливов, возникающий за счет лунного параллакса, составляет 271/2 суток. Причина этого неравенства состоит в изменении расстояния Луны от Земли в процессе вращения последней. Из-за эллиптической формы лунной орбиты приливообразующая сила Луны в перигее на 40% выше, чем в апогее. Этот расчет справедлив для порта Нью-Йорк, где эффект пребывания Луны в апогее или перигее обычно запаздывает примерно на 11/2 суток относительно соответствующей фазы Луны. Для порта Сан-Франциско разница в высотах приливов, обусловленная нахождением Луны в перигее или апогее, составляет только 32%, и они следуют за соответствующими фазами Луны с запаздыванием на двое суток.
Суточное неравенство. Период этого неравенства составляет 24 ч 50 мин. Причины его возникновения - вращение Земли вокруг своей оси и изменение склонения Луны. Когда Луна находится вблизи небесного экватора, два прилива в данные сутки (а также два отлива) слабо различаются, и высоты утренних и вечерних полных и малых вод весьма близки. Однако с увеличением северного или южного склонения Луны утренние и вечерние приливы одного и того же типа различаются по высоте, и, когда Луна достигает наибольшего северного или южного склонения, эта разница максимальна. Известны также тропические приливы, называемые так из-за того, что Луна находится почти над Северным или Южным тропиками.
Суточное неравенство существенно не влияет на высоты двух последовательных отливов в Атлантическом океане, и даже его воздействие на высоты приливов мало по сравнению с общей амплитудой колебаний. Однако в Тихом океане суточная неравномерность проявляется в уровнях отливов втрое сильнее, чем в уровнях приливов.
Полугодовое неравенство. Его причиной является обращение Земли вокруг Солнца и соответствующее изменение склонения Солнца. Дважды в год в течение нескольких суток во время равноденствий Солнце находится близ небесного экватора, т.е. его склонение близко к 0?. Луна также располагается вблизи небесного экватора приблизительно в течение суток каждые полмесяца. Таким образом, во время равноденствий существуют периоды, когда склонения и Солнца и Луны приблизительно равны 0?. Суммарный приливообразующий эффект притяжения этих двух тел в такие моменты наиболее заметно проявляется в районах, расположенных вблизи земного экватора. Если в то же самое время Луна находится в фазе новолуния или полнолуния, возникают т.н. равноденственные сизигийные приливы.
Солнечное параллактическое неравенство. Период проявления этого неравенства составляет один год. Его причиной служит изменение расстояния от Земли до Солнца в процессе орбитального движения Земли. Один раз за каждый оборот вокруг Земли Луна находится на кратчайшем от нее расстоянии в перигее. Один раз в год, примерно 2 января, Земля, двигаясь по своей орбите, также достигает точки наибольшего приближения к Солнцу (перигелия). Когда эти два момента наибольшего сближения совпадают, вызывая наибольшую суммарную приливообразующую силу, можно ожидать более высоких уровней приливов и более низких уровней отливов. Подобно этому, если прохождение афелия совпадает с апогеем, возникают менее высокие приливы и менее глубокие отливы.
Методы наблюдений и прогноз высоты приливов. Измерение уровней приливов осуществляется при помощи устройств различных типов.
Футшток - это обычная рейка с нанесенной на нее шкалой в сантиметрах, прикрепляемая вертикально к пирсу или к опоре, погруженной в воду так, что нулевая отметка находится ниже наиболее низкого уровня отлива. Изменения уровня считывают непосредственно с этой шкалы.
Поплавковый футшток. Такие футштоки используются там, где постоянное волнение или мелководная зыбь затрудняют определение уровня по неподвижной шкале. Внутри защитного колодца (полой камеры или трубы), вертикально установленного на морском дне, помещается поплавок, который соединен с указателем, закрепленным на неподвижной шкале, или пером самописца. Вода проникает в колодец сквозь небольшое отверстие, расположенное значительно ниже минимального уровня моря. Его приливные изменения через поплавок передаются на измерительные приборы.
Гидростатический самописец уровня моря. На определенной глубине размещается блок резиновых мешков. По мере изменения высоты прилива (слоя воды) меняется гидростатическое давление, которое фиксируется измерительными приборами. Автоматические регистрирующие устройства (мареографы) также могут применяться для получения непрерывной записи приливо-отливных колебаний в любой точке.
Таблицы приливов. При составлении таблиц приливов используются два основных метода: гармонический и негармонический. Негармонический метод всецело базируется на результатах наблюдений. Кроме того, привлекаются характеристики портовых акваторий и некоторые основные астрономические данные (часовой угол Луны, время ее прохождения через небесный меридиан, фазы, склонения и параллакс). После внесения поправок на перечисленные факторы расчет момента наступления и уровня прилива для любого порта является чисто математической процедурой.
Гармонический метод является отчасти аналитическим, а отчасти основан на данных наблюдений за высотами приливов, проводившихся в течение по меньшей мере одного лунного месяца. Для подтверждения этого типа прогнозов для каждого порта необходимы длительные ряды наблюдений, поскольку за счет таких физических явлений, как инерция и трение, а также сложной конфигурации берегов акватории и особенностей рельефа дна возникают искажения. Поскольку приливо-отливным процессам присуща периодичность, к ним применяется анализ гармонических колебаний. Наблюдаемый прилив рассматривается как результат сложения серии простых составляющих волн прилива, каждая из которых вызвана одной из приливообразующих сил или одним из факторов. Для полного решения используется 37 таких простых составляющих, хотя в некоторых случаях дополнительные компоненты сверх 20 основных пренебрежимо малы. Одновременная подстановка 37 констант в уравнение и собственно его решение осуществляется на компьютере.
Приливы на реках и течения. Взаимодействие приливов и речных течений хорошо заметно там, где крупные реки впадают в океан. Высота приливов в бухтах, устьях рек и эстуариях может существенно возрастать в результате увеличения стока в маргинальных потоках, особенно во время половодий. Вместе с тем океанические приливы проникают далеко вверх по рекам в виде приливных течений. Например, на р.Гудзон приливная волна заходит на расстояние 210 км от устья. Приливные течения обычно распространяются вверх по реке до труднопреодолимых водопадов или порогов. Во время приливов течения в реках отличаются бльшими скоростями, чем во время отливов. Максимальные скорости приливных течений достигают 22 км/ч.
Бор. Когда вода, приходящая в движение под воздействием прилива большой высоты, ограничена в своем перемещении узким руслом, образуется довольно крутая волна, которая единым фронтом перемещается вверх по потоку. Это явление называется приливной волной, или бором. Такие волны наблюдаются на реках гораздо выше устьев, где сочетание силы трения и течения реки в наибольшей степени препятствует распространению прилива. Известно явление формирования бора в заливе Фанди в Канаде. Около Монктона (пров. Нью-Брансуик) р.Птикодиак впадает в бухту Фанди, образуя маргинальный поток. В малую воду его ширина 150 м, и он пересекает полосу осушки. Во время прилива стена воды протяженностью 750 м и высотой 60-90 см шипящим и бурлящим вихрем устремляется вверх по реке. Самый большой из известных боров высотой 4,5 м формируется на р.Фучуньцзян, впадающей в залив Ханьчжоу. См. также БОР
.
Реверсивный водопад (меняющий направление на противоположное) - это еще одно явление, связанное с приливами на реках. Типичный пример - водопад на р.Сент-Джон (пров. Нью-Брансуик, Канада). Здесь по узкому ущелью вода во время прилива проникает в котловину, расположенную выше уровня малой воды, однако несколько ниже уровня полной воды в этой же теснине. Таким образом, возникает преграда, перетекая через которую вода образует водопад. Во время отлива сток воды устремляется вниз по течению через суженный проход и, преодолевая подводный уступ, образует обычный водопад. Во время прилива проникшая в ущелье крутая волна обрушивается водопадом в вышележащую котловину. Попятное течение продолжается до тех пор, пока уровни воды по обе стороны порога не сравняются и не начнется отлив. Затем опять восстанавливается водопад, обращенный вниз по течению. Средний перепад уровня воды в ущелье составляет ок. 2,7 м, однако при самых высоких приливах высота прямого водопада может превысить 4,8 м, а реверсивного - 3,7 м.
Наибольшие амплитуды приливов. Самый высокий в мире прилив формируется в условиях сильного течения в бухте Минас в заливе Фанди. Приливные колебания здесь характеризуются нормальным ходом с полусуточным периодом. Уровень воды во время прилива часто поднимается за шесть часов более чем на 12 м, а затем в течение последующих шести часов понижается на ту же величину. Когда воздействие сизигийного прилива, положение Луны в перигее и максимальное склонение Луны приходятся на одни сутки, уровень прилива может достигать 15 м. Такая исключительно большая амплитуда приливо-отливных колебаний отчасти обусловлена воронкообразной формой залива Фанди, где глубины уменьшаются, а берега сближаются по направлению к вершине залива.
Ветер и погода. Ветер оказывает существенное влияние на приливо-отливные явления. Ветер с моря нагоняет воду в сторону берега, высота прилива увеличивается сверх обычной, и при отливе уровень воды тоже превосходит средний. Напротив, при ветре, дующем с суши, вода сгоняется от берега, и уровень моря понижается.
За счет повышения атмосферного давления над обширной акваторией происходит понижение уровня воды, так как добавляется наложенный вес атмосферы. Когда атмосферное давление возрастает на 25 мм рт. ст., уровень воды понижается приблизительно на 33 см. Понижение атмосферного давления вызывает соответствующее повышение уровня воды. Следовательно, резкое падение атмосферного давления в сочетании с ветром ураганной силы способно вызвать заметный подъем уровня воды. Подобные волны, хотя и называются приливными, на самом деле не связаны с воздействием приливообразующих сил и не обладают периодичностью, характерной для приливо-отливных явлений. Формирование упомянутых волн может быть сопряжено либо с ветрами ураганной силы, либо с подводными землетрясениями (в последнем случае они называются сейсмическими морскими волнами, или цунами).
Использование энергии приливов. Разработаны четыре метода использования энергии приливов, но наиболее практичным из них является создание системы приливных бассейнов. При этом колебания уровня воды, связанные с приливо-отливными явлениями, используются в системе шлюзов так, что постоянно поддерживается перепад уровней, позволяющий получать энергию. Мощность приливных электростанций непосредственно зависит от площади бассейнов-ловушек и потенциального перепада уровней. Последний фактор, в свою очередь, является функцией амплитуды приливо-отливных колебаний. Достижимый перепад уровней, безусловно, наиболее важен для производства электроэнергии, хотя стоимость сооружений зависит от площади бассейнов. В настоящее время крупные приливные электростанции действуют в России на Кольском п-ове и в Приморье, во Франции в эстуарии р.Ранс, в Китае близ Шанхая, а также в других районах земного шара.
См. также:
Штормовой прилив         
  • Описание наводнения в СПб [[1777 год]]а
ПОДЪЁМ УРОВНЯ ВОДЫ В ПОЛУЗАМКНУТЫХ ВОДОЁМАХ, ПОДЧАС ВЕСЬМА РЕЗКИЙ, ПРИВОДЯЩИЙ К НАВОДНЕНИЯМ
Штормовой нагон воды; Ветровой нагон; Ветровой нагон воды; Штормовой нагон
Штормовой нагон или прилив — подъём уровня воды в полузамкнутых водоёмах, подчас весьма резкий, приводящий к наводнениям.

Википедия

Прилив и отлив

Прили́в и отли́в— периодические колебания уровня океана или моря, являющиеся результатом воздействия приливных сил Луны и Солнца, однако приливообразующая сила Луны в 2,17 раз больше приливообразующей силы Солнца, поэтому характеристики прилива в основном зависят от взаимного положения Луны и Земли.

Приливы и отливы вызывают изменения в высоте уровня моря, а также периодические течения, известные как прили́вные течения, делающие предсказание приливов важным для прибрежной навигации. Отливы играли заметную роль в снабжении прибрежного населения морепродуктами, позволяя собирать на обнажившемся морском дне годную для еды пищу.

Что такое прилив - определение