случайный - определение. Что такое случайный
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое случайный - определение

ПОСЁЛОК В НОГИНСКОМ РАЙОНЕ МОСКОВСКОЙ ОБЛАСТИ РОССИИ
Найдено результатов: 68
СЛУЧАЙНЫЙ         
1. (прост.). Выражает предложение, часто неодобрительное
Ты, случайно,не домой идешь. А он, случайно, не жулик ли?
2. возникший, появившийся непредвиденно.
Случайная ошибка. С. гость. Случайное знакомство. Случайно (нареч.) встретиться.
3. бывающий лишь иногда, от случая к случаю.
Случайные поручения.
случайный         
прил.
1) Возникший, случившийся непредвиденно, непреднамеренно.
2) Появившийся, возникший без достаточных причин, оснований.
3) Такой, который происходит от случая к случаю; несистематический.
4) Состоящий из имеющих мало общего друг с другом частей, единиц; разнородный.
случайный         
СЛУЧ'АЙНЫЙ, случайная, случайное; случаен, случайна, случайно.
1. Появившийся, возникший непреднамеренно, непредвиденно. "На скудный твой наряд с насмешкой не случайной все, кажется, глядят." Некрасов. "Двух станов не боец, но только гость случайный." А.К.Толстой. Случайная ошибка. Случайное обстоятельство. Случайная удача. Случайное знакомство. Случайный выигрыш. Случайный проигрыш.
2. только ·полн. Происходящий от случая к случаю, не постоянный, бывающий лишь иногда, не систематически. Случайные встречи. Случайные заработки.
3. только ·полн. Находящийся в случае (см. случай
в 4 ·знач.; ·устар. ). Случайный человек (временщик, фаворит). "Князь - человек случайный и может быть полезен Якову Васильевичу." Писемский. "Городничиха... играет роль случайной дамы, которая, однако, нисколько не удивлена своим счастием." Белинский.
Случайный граф         
ОБЩИЙ ТЕРМИН ДЛЯ ОБОЗНАЧЕНИЯ ВЕРОЯТНОСТНОГО РАСПРЕДЕЛЕНИЯ ГРАФОВ
Граф случайный
Случайный граф — общий термин для обозначения вероятностного распределения графов. Случайные графы можно описать просто распределением вероятности или случайным процессом, создающим эти графы
Произвольный доступ         
Случайный доступ
В информатике под произвольным доступом (также называемым случайным доступом, ) понимают возможность обратиться к любому элементу последовательности за равные промежутки времени, не зависящие от размеров последовательности (в отличие от последовательного доступа, когда чем дальше расположен элемент, тем больше требуется времени для доступа).
Случайный процесс         
Случайные процессы; Случайная функция; Траектория случайного процесса; Реализация случайной функции; Стационарный случайный процесс; Теория случайных процессов; Стационарные случайные процессы; Стохастический процесс; Стационарный процесс; Вероятностный процесс
(вероятностный, или стохастический)

процесс (т. е. изменение во времени состояния некоторой системы), течение которого может быть различным в зависимости от случая и для которого определена вероятность того или иного его течения. Типичным примером С. п. может служить Броуновское движение; другими практически важными примерами являются турбулентные течения (См. Турбулентное течение) жидкостей и газов, протекание тока в электрической цепи при наличии неупорядоченных флуктуаций (См. Флуктуации) напряжения и силы тока (шумов) и распространение радиоволн при наличии случайных замираний (федингов) радиосигналов, создаваемых метеорологическими или иными помехами. К числу С. п. могут быть причислены и многие производственные процессы, сопровождающиеся случайными флуктуациями, а также ряд процессов, встречающихся в геофизике (например, вариации земного магнитного поля), физиологии (например, изменение биоэлектрических потенциалов мозга, регистрируемое на электроэнцефалограмме) и экономике.

Для возможности применения математических методов к изучению С. п. требуется, чтобы мгновенное состояние системы можно было схематически представить в виде точки некоторого фазового пространства (пространства состояний) R', при этом С. п. будет представляться функцией X (t) времени t со значениями из R. Наиболее изученным и весьма интересным с точки зрения многочисленных приложений является случай, когда точки R задаются одним или несколькими числовыми параметрами (обобщёнными координатами системы). В математических исследованиях под С. п. часто понимают просто числовую функцию X (t), могущую принимать различные значения в зависимости от случая с заданным распределением вероятностей для различных возможных её значений - одномерный С. п.; если же точки R задаются несколькими числовыми параметрами, то соответствующий С. п. X (t)={X1(t), X2(t),..., Xk (t)} называется многомерным.

Математическая теория С. п. (а также более общих случайных функций (См. Случайная функция) произвольного аргумента) является важной главой вероятностей теории (См. Вероятностей теория). Первые шаги по созданию теории С. п. относились к ситуациям, когда время t изменялось дискретно, а система могла иметь лишь конечное число разных состояний, т. е. - к схемам последовательности зависимых испытаний (А. А. Марков старший и др.). Развитие теорий С. п., зависящих от непрерывно меняющегося времени, является заслугой сов. математиков Е. Е. Слуцкого (См. Слуцкий), А. Н. Колмогорова и А. Я. Хинчина, американских математиков Н. Винера, В. Феллера и Дж. Дуба, французского математика П. Леей (См. Лей), швед. математика X. Крамера и др. Наиболее детально разработана теория некоторых специальных классов С. п., в первую очередь - марковских процессов (См. Марковский процесс) и стационарных случайных процессов (См. Стационарный случайный процесс), а также ряда подклассов и обобщений указанных двух классов С. п. (цепи Маркова, ветвящиеся процессы, процессы с независимыми приращениями, мартингалы, процессы со стационарными приращениями и др.).

Лит.: Марков А. А., Замечательный случай испытаний, связанных в цепь, в его кн.: Исчисление вероятностей, 4 изд., М., 1924; Слуцкий Е. Е., Избранные труды, М., 1960; Колмогоров А. Н., Об аналитических методах в теории вероятностей, "Успехи математических наук", 1938, в. 5, с. 5-41; Хинчин А. Я., Теория корреляции стационарных стохастических процессов, там же, с. 42-51; Винер Н., Нелинейные задачи в теории случайных процессов, пер. с англ., М., 1961; Дуб Дж., Вероятностные процессы, пер. с англ., М., 1956; Леви П., Стохастические процессы и броуновское движение, пер. с франц., М., 1972; Чандрасекар С., Стохастические проблемы в физике и астрономии, пер. с англ., М., 1947; Розанов Ю. А., Случайные процессы, М., 1971; Гихман И. И., Скороход А. В., Теория случайных процессов, т. 1-2, М., 1971-73.

А. М. Яглом.

Случайная функция         
Случайные процессы; Случайная функция; Траектория случайного процесса; Реализация случайной функции; Стационарный случайный процесс; Теория случайных процессов; Стационарные случайные процессы; Стохастический процесс; Стационарный процесс; Вероятностный процесс

функция произвольного аргумента t (заданная на множестве Т его значений и сама принимающая или числовые значения или, более общо, значения из какого-то векторного пространства) такая, что её значения определяются с помощью некоторого испытания и в зависимости от его исхода могут быть различными, причём для них существует определённое распределение вероятностей. Если множество Т конечно, то С. ф. представляет собой конечный набор случайных величин (См. Случайная величина), который можно рассматривать как одну векторную случайную величину. Из числа С. ф. с бесконечным Т наиболее изучен важнейший частный случай, когда t принимает числовые значения и является временем; соответствующая С. ф. X (t) тогда называется случайным процессом (См. Случайный процесс) (а если время t пробегает лишь целочисленные значения, то также и случайной последовательностью, или временным рядом). Если же значениями аргумента t являются точки из некоторой области многомерного пространства, то С. ф. называется случайным полем. Типичными примерами С. ф., отличных от случайных процессов, являются поля скорости, давления и температуры турбулентного течения жидкости или газа, а также значения высоты z взволнованной морской поверхности или поверхности какой-либо искусственной шероховатой пластинки.

Математическая теория С. ф. совпадает с теорией распределений вероятностей в функциональном пространстве значений функции X (t), эти распределения могут задаваться набором конечномерных распределений вероятностей для совокупностей случайных величин X (t1), X (t2),..., X (tn), отвечающих всевозможным конечным подмножествам (t1, t2,..., tn) точек множества Т, или же характеристическим функционалом С. ф. X (t), представляющим собой математическое ожидание случайной величины il [X (t)], где l [X (t)] - линейный функционал от Х (t) общего вида. Значительное развитие получила теория однородных случайных полей, являющихся частным классом С. ф., обобщающим класс стационарных случайных процессов (См. Стационарный случайный процесс).

Лит.: Выбросы случайных полей Сб. ст. М., 1972; Yaglom А. М., Second-order homogeneous random fields, в кн.: Proceedings 4th Berkeley symposium on mathematical statistics and probability, v. 2, Berk - Ins Aug., 1961; Whittle P., Stochastic processes in several dimensions, "Bulletin of the Institute of Statistics", 1963, v. 40.

СЛУЧАЙНЫЙ ПРОЦЕСС         
Случайные процессы; Случайная функция; Траектория случайного процесса; Реализация случайной функции; Стационарный случайный процесс; Теория случайных процессов; Стационарные случайные процессы; Стохастический процесс; Стационарный процесс; Вероятностный процесс
(вероятностный , или стохастический), процесс изменения во времени состояния или характеристик некоторой системы под влиянием различных случайных факторов, для которого определена вероятность того или иного его течения. Типичным примером случайного процесса может служить броуновское движение. См. также Марковский процесс, Стационарный случайный процесс.
Случайный процесс         
Случайные процессы; Случайная функция; Траектория случайного процесса; Реализация случайной функции; Стационарный случайный процесс; Теория случайных процессов; Стационарные случайные процессы; Стохастический процесс; Стационарный процесс; Вероятностный процесс
Случа́йный проце́сс (вероятностный процесс, случайная функция, стохастический процесс) в теории вероятностей — семейство случайных величин, индексированных некоторым параметром, чаще всего играющим роль времени или координаты.
СЛУЧАЙНАЯ ФУНКЦИЯ         
Случайные процессы; Случайная функция; Траектория случайного процесса; Реализация случайной функции; Стационарный случайный процесс; Теория случайных процессов; Стационарные случайные процессы; Стохастический процесс; Стационарный процесс; Вероятностный процесс
функция произвольного аргумента такая, что ее значения определяются случайным исходом некоторого испытания, причем для них существует определенное распределение вероятностей. Понятие случайной функции весьма близко понятию случайного процесса.

Википедия

Случайный

Случа́йный — посёлок в городском округе Электросталь Московской области России.

Расположен на востоке Московской области, примерно в 36 км к востоку от Московской кольцевой автодороги и 12 км к югу от центра города Ногинска.

В 11 км к югу от посёлка проходит Носовихинское шоссе, в 8 км к северу — Горьковское шоссе М7, в 1,5 км к востоку — Московское малое кольцо А107, в 3 км — пути Горьковского направления и хордовой линии Мытищи — Фрязево Ярославского направления Московской железной дороги. Ближайшие сельские населённые пункты — село Иванисово и деревня Бабеево.

К посёлку приписаны пять садоводческих товариществ (СНТ).

С 2006 по 2017 год посёлок входил в состав сельского поселения Стёпановское Ногинского района.

Что такое СЛУЧАЙНЫЙ - определение