(лат. Lithium)
Li, химический элемент 1 группы периодической системы Менделеева, атомный номер 3, атомная масса 6,941, относится к щелочным металлам (См.
Щелочные металлы). Природный Л. состоит из двух стабильных изотопов -
6Li (7,42\%) и
7Li (92,58\%).
Л. был открыт в 1817 шведским химиком А. Арфведсоном в минерале петалите; название от греч. líthos - камень. Металлический Л. впервые получен в 1818 английским химиком Г. Дэви.
Распространение в природе. Л. - типичный элемент земной коры (содержание 3,2․10
-3\% по массе), он накапливается в наиболее поздних продуктах дифференциации магмы - пегматитах. В мантии мало Л. - в ультраосновных породах всего 5․10
-3\% (в основных 1,5․10
-3\%, средних - 2․10
-3\%, кислых 4․10
-3\%). Близость ионных радиусов
Li+, Fe
2+ и Mg
2+ позволяет Л. входить в решётки магнезиально-железистых силикатов - пироксенов и амфиболов. В гранитоидах он содержится в виде изоморфной примеси в слюдах. Только в пегматитах и в биосфере известно 28 самостоятельных минералов Л. (силикаты, фосфаты и др.). Все они редкие (см.
Литиевые руды). В биосфере Л. мигрирует сравнительно слабо, роль его в живом веществе меньше, чем остальных щелочных металлов. Из вод он легко извлекается глинами, его относительно мало в Мировом океане (1,5․10
-5\%). Промышленные месторождения Л. связаны как с магматическими породами (пегматиты, пневматолиты), так и с биосферой (солёные озёра).
Физические и химические свойства. Компактный Л. - серебристо-белый металл, быстро покрывающийся тёмно-серым налётом, состоящим из нитрида Li3N и окиси Li2O. При обычной температуре Л. кристаллизуется в кубической объёмноцентрированной решётке, а = 3,5098Å . Атомный радиус 1,57 Å, ионный радиус Li+ 0,68 Å. Ниже -195°С решётка Л. гексагональная плотноупакованная. Л. - самый лёгкий металл; плотность 0,534 г/см3 (20°С); tпл. 180,5°С, tkип. 1317°С. Удельная теплоёмкость (при 0-100°С) 3,31(103 дж/(кг․К), т. е. 0,790 кал/(г·град); термический коэффициент линейного расширения 5,6․10-5. Удельное электрическое сопротивление (20°С) 9,29․10-8 ом·м (9,29 мком·см); температурный коэффициент электрического сопротивления (0-100°С) 4,50․10-3. Л. парамагнитен. Металл весьма пластичен и вязок, хорошо обрабатывается прессованием и прокаткой, легко протягивается в проволоку. Твёрдость по Моосу 0,6 (твёрже, чем Na и К), легко режется ножом. Давление истечения (15-20°С) 17 Мн/м2 (1,7 кгс/мм2). Модуль упругости 5 Гн/м2 (500 кгс/мм2), предел прочности при растяжении 116 Мн/м2 (11,8 кгс/мм2), относительное удлинение 50-70\%. Пары Л. окрашивают пламя в карминово-красный цвет.
Конфигурация внешней электронной оболочки атома Л. 2s1; во всех известных соединениях он одновалентен. При взаимодействии с кислородом или при нагревании на воздухе (горит голубым пламенем) Л. образует окись Li2O (перекись Li2O2 получается только косвенным путём). С водой реагирует менее энергично, чем др. щелочные металлы, при этом образуются гидроокись LiOH и водород. Минеральные кислоты энергично растворяют Li (стоит первым в ряду напряжений, его нормальный электродный потенциал - 3,02 в).
Л. соединяется с галогенами (с йодом при нагревании), образуя галогениды (важнейший -
Лития хлорид). При нагревании с серой Л. даёт сульфид
Li2S, а с водородом -
Лития гидрид. С азотом Л. медленно реагирует уже при комнатной температуре, энергично - при 250°С с образованием нитрида
Li3N. С фосфором Л. непосредственно не взаимодействует, но в специальных условиях могут быть получены фосфиды
Li3P, LiP,
Li2P
2. Нагревание Л. с углеродом приводит к получению карбида
Li2C
2, с кремнием - силицида Л. Бинарные соединения Л. -
Li2O, LiH,
Li3N,
Li2C
2, LiCI и др., a также LiOH весьма реакционноспособны; при нагревании или плавлении они разрушают многие металлы, фарфор, кварц и др. материалы. Карбонат (см.
Лития карбонат), фторид LiF, фосфат
Li3PO
4 и др. соединения Л. по условиям образования и свойствам близки к соответствующим производным магния и кальция.
Л. - компонент многих сплавов. С некоторыми металлами (Mg, Zn, Al) он образует твёрдые растворы значительной концентрации, со многими - интерметаллиды (LiAg, LiHg, LiMg2, LiAl и мн. др.). Последние часто весьма тверды и тугоплавки, незначительно изменяются на воздухе; некоторые из них - полупроводники. Изучено более 30 бинарных и ряд тройных систем с участием Л.; соответствующие им сплавы уже нашли применение в технике.
Получение и применение. Соединения Л. получаются в результате гидрометаллургической переработки концентратов - продуктов обогащения литиевых руд. Основной силикатный минерал - сподумен перерабатывают по известковому, сульфатному и сернокислотному методам. В основе первого - разложение сподумена известняком при 1150-1200°С:
Li2O․Al2O3․4SiO2 + 8CaCO3 = Li2OAl2O3 + 4(2CaO․SiO2) + 8CO2.
При выщелачивании спека водой в присутствии избытка извести алюминат Л. разлагается с образованием гидроокиси Л.:
Li2O․Al2O3 + Ca(OH)2 = 2LiOH + CaO․Al2O3.
По сульфатному методу сподумен (и др. алюмосиликаты) спекают с сульфатом калия:
Li2O․Al2O3․4SiO2 + K2SO4 = Li2SO4 + K2O․Al2O3․4SiO2.
Сульфат Л. растворяют в воде и из его раствора содой осаждают карбонат Л.:
Li2SO
4 + Na
2CO
3 =
Li2CO
3 + Na
2SO
4.
По сернокислотному методу также получают сначала раствор сульфата Л., а затем карбонат Л.; сподумен разлагают серной кислотой при 250-300°С (реакция применима только для β-модификации сподумена):
β-Li2O․Al2O3․4SiO2 + H2SO4 = Li2SO4 + H2O․Al2O3․4SiO2.
Метод используется для переработки руд, необогащённых сподуменом, если содержание в них Li2O не менее 1\%. Фосфатные минералы Л. легко разлагаются кислотами, однако по более новым методам их разлагают смесью гипса и извести при 950-1050°С с последующей водной обработкой спеков и осаждением из растворов карбоната Л.
Металлический Л. получают электролизом расплавленной смеси хлоридов Л. и калия при 400-460°С (весовое соотношение компонентов 1:1). Электролизные ванны футеруются магнезитом, алундом, муллитом, тальком, графитом и др. материалами, устойчивыми к расплавленному электролиту; анодом служат графитовые, а катодом - железные стержни. Черновой металлический Л. содержит механические включения и примеси (К, Mg, Ca, Al, Si, Fe, но главным образом Na). Включения удаляются переплавкой, примеси - рафинированием при пониженном давлении. В настоящее время большое внимание уделяется металлотермическим методам получения Л.
Важнейшая область применения Л. -
Ядерная энергетика. Изотоп
6Li - единственный промышленный источник для производства трития (См.
Тритий) (см.
Водород) по реакции:
.
Сечения захвата тепловых нейтронов (σ) изотопами Л. резко различаются:
6Li 945,
7Li 0,033; для естественной смеси 67 (в
Барнах); это важно в связи с техническим применением Л. - при изготовлении регулирующих стержней в системе защиты реакторов. Жидкий Л. (в виде изотопа
7Li) используется в качестве теплоносителя в урановых реакторах. Расплавленный
7LiF применяется как растворитель соединений U и Th в гомогенных реакторах. Крупнейшим потребителем соединений Л. является силикатная промышленность, в которой используют минералы Л., LiF,
Li2CO
3 и многие специально получаемые соединения. В чёрной металлургии Л., его соединения и сплавы широко применяют для раскисления, легирования и модифицирования многих марок сплавов. В цветной металлургии литием обрабатывают сплавы для получения хорошей структуры, пластичности и высокого предела прочности. Хорошо известны алюминиевые сплавы, содержащие всего 0,1\% Л., - аэрон и склерон; помимо лёгкости, они обладают высокой прочностью, пластичностью, стойкостью против коррозии и очень перспективны для авиастроения. Добавка 0,04\% Л. к свинцово-кальциевым подшипниковым сплавам повышает их твёрдость и понижает трение. Соединения Л. используются для получения пластичных смазок (См.
Пластичные смазки). По значимости в современной технике Л. - один из важнейших редких элементов.
В. Е. Плющев.
Литий в организме. Л. постоянно входит в состав живых организмов, однако его биологическая роль выяснена недостаточно. Установлено, что у растений Л. повышает устойчивость к болезням, усиливает фотохимическую активность хлоропластов в листьях (томаты) и синтез никотина (табак). Способность концентрировать Л. сильнее всего выражена среди морских организмов у красных и бурых водорослей, а среди наземных растений - у представителей семейства Ranunculaceae (василистник, лютик) и семейства Solanaceae (дереза). У животных Л. концентрируется главным образом в печени и лёгких.
Лит.: Плющев В. Е., Степин Б. Д., Химия и технология соединений лития, рубидия и цезия, М., 1970; Ландольт П., Ситтиг М., Литий, в кн.: Справочник по редким металлам, пер. с англ., М., 1965.