L(2,1)-coloring - Definition. Was ist L(2,1)-coloring
DICLIB.COM
KI-basierte Sprachtools
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:     

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist L(2,1)-coloring - definition


L(2,1)-coloring         
L(2, 1)-coloring is a particular case of L(h, k)-coloring. In an L(2, 1)-coloring of a graph, G, the vertices of G are assigned color numbers in such a way that adjacent vertices get labels that differ by at least two, and the vertices that are at a distance of two from each other get labels that differ by at least one.
graph colouring         
  • 3}}}} (blue) admits a 3-coloring; the other graphs admit a 2-coloring.
  • This graph can be 3-colored in 12 different ways.
  • Two greedy colorings of the same graph using different vertex orders. The right example generalizes to 2-colorable graphs with ''n'' vertices, where the greedy algorithm expends <math>n/2</math> colors.
ASSIGNMENT OF COLORS TO ELEMENTS OF A GRAPH SUBJECT TO CERTAIN CONSTRAINTS
Colouring algorithm; Coloring algorithm; Graph coloring algorithm; Chromatic number; Graph colouring problems; Graph coloring problem; Colored graph; Graph Colouring; Vertex chromatic number; K-vertex colorable; Vertex color; Graph colouring problem; Graph colouring; Three-Colorable Graph; Three-colorable graph; Vertex-colouring; Vertex colouring; Vertex coloring; Coloring problem; Colouring problem; Two-colorable graph; Graph two-coloring; Graph Two-Coloring; Graph coloration; Graph color; K-colouring; 3-colourability; Colourability; Proper coloring; K-coloring; Network coloring; Network colouring; K-chromatic graph; Distributed graph coloring; Cole–Vishkin algorithm; Cole-Vishkin algorithm; Mycielski's theorem; K-colorable; Unlabeled coloring; Vector chromatic number; Face coloring; Algorithms for graph coloring; Parallel algorithms for graph coloring; Applications of graph coloring; Decentralized graph coloring; Computational complexity of graph coloring
<application> A constraint-satisfaction problem often used as a test case in research, which also turns out to be equivalent to certain real-world problems (e.g. {register allocation}). Given a connected graph and a fixed number of colours, the problem is to assign a colour to each node, subject to the constraint that any two connected nodes cannot be assigned the same colour. This is an example of an NP-complete problem. See also four colour map theorem.
chromatic number         
  • 3}}}} (blue) admits a 3-coloring; the other graphs admit a 2-coloring.
  • This graph can be 3-colored in 12 different ways.
  • Two greedy colorings of the same graph using different vertex orders. The right example generalizes to 2-colorable graphs with ''n'' vertices, where the greedy algorithm expends <math>n/2</math> colors.
ASSIGNMENT OF COLORS TO ELEMENTS OF A GRAPH SUBJECT TO CERTAIN CONSTRAINTS
Colouring algorithm; Coloring algorithm; Graph coloring algorithm; Chromatic number; Graph colouring problems; Graph coloring problem; Colored graph; Graph Colouring; Vertex chromatic number; K-vertex colorable; Vertex color; Graph colouring problem; Graph colouring; Three-Colorable Graph; Three-colorable graph; Vertex-colouring; Vertex colouring; Vertex coloring; Coloring problem; Colouring problem; Two-colorable graph; Graph two-coloring; Graph Two-Coloring; Graph coloration; Graph color; K-colouring; 3-colourability; Colourability; Proper coloring; K-coloring; Network coloring; Network colouring; K-chromatic graph; Distributed graph coloring; Cole–Vishkin algorithm; Cole-Vishkin algorithm; Mycielski's theorem; K-colorable; Unlabeled coloring; Vector chromatic number; Face coloring; Algorithms for graph coloring; Parallel algorithms for graph coloring; Applications of graph coloring; Decentralized graph coloring; Computational complexity of graph coloring

Wikipedia

L(2,1)-coloring
L(2, 1)-coloring is a particular case of L(h, k)-coloring. In an L(2, 1)-coloring of a graph, G, the vertices of G are assigned color numbers in such a way that adjacent vertices get labels that differ by at least two, and the vertices that are at a distance of two from each other get labels that differ by at least one.